File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 125 -
dc.citation.startPage 115 -
dc.citation.title JOURNAL OF NUCLEAR MATERIALS -
dc.citation.volume 491 -
dc.contributor.author Seo, Seungjin -
dc.contributor.author Choi, Sungyeol -
dc.contributor.author Park, Byung Gi -
dc.date.accessioned 2023-12-21T22:06:51Z -
dc.date.available 2023-12-21T22:06:51Z -
dc.date.created 2017-06-20 -
dc.date.issued 2017-08 -
dc.description.abstract During the molten salt electrorefining of spent nuclear fuel, multiple phases such as oxide, solid metal, liquid metal, and molten salt often co-exist. Computational modeling can be a useful tool for understanding the reaction mechanism across the multiple phases. The new model has been developed and applied to a lab-scale electrorefining with liquid metal anode and solid cathode LiCl-KCl molten salt. The benchmark study predicts anodic dissolution and cathodic deposition of U and Pu with minor disagreements. In particular, the on-set of Pu deposition on the surface of the solid cathode is well estimated, which is important for the quality of U ingot and the safeguards of process. The underestimation of U deposition (∼6%) and the overestimation of Pu dissolution (∼7%) at the end of simulation are explained by unconsidered reaction species such as Np and Am from the liquid Cd anode, which overestimates the dissolution of Pu from the anode compared to the measured data. The sensitivity study also reveals the transition behaviors of electrochemical reactions for U and Pu on the solid cathode are changed by diffusion boundary layer thickness, transfer coefficients, and the difference of electrochemical potentials more sensitively than those of the liquid metal anode. For this specific experiment case, the thinner diffusion boundary layer improves the prediction of cathodic reactions particularly at the end of electrorefining. -
dc.identifier.bibliographicCitation JOURNAL OF NUCLEAR MATERIALS, v.491, pp.115 - 125 -
dc.identifier.doi 10.1016/j.jnucmat.2017.04.053 -
dc.identifier.issn 0022-3115 -
dc.identifier.scopusid 2-s2.0-85019044858 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22245 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S0022311517300399 -
dc.identifier.wosid 000404306700013 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE BV -
dc.title Transient modeling of spent nuclear fuel electrorefining with liquid metal electrode -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Nuclear Science & Technology -
dc.relation.journalResearchArea Materials Science; Nuclear Science & Technology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Electrorefining -
dc.subject.keywordAuthor Liquid electrode -
dc.subject.keywordAuthor Molten salt -
dc.subject.keywordAuthor Spent nuclear fuel -
dc.subject.keywordAuthor Transient modeling -
dc.subject.keywordPlus PYROPROCESSING TECHNOLOGY DEVELOPMENT -
dc.subject.keywordPlus THERMODYNAMIC PROPERTIES -
dc.subject.keywordPlus MOLTEN-SALTS -
dc.subject.keywordPlus URANIUM -
dc.subject.keywordPlus SIMULATION -
dc.subject.keywordPlus ACTINIDES -
dc.subject.keywordPlus CADMIUM -
dc.subject.keywordPlus ELECTROCHEMISTRY -
dc.subject.keywordPlus PLUTONIUM -
dc.subject.keywordPlus CATHODE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.