File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박수진

Park, Soojin
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 10597 -
dc.citation.number 11 -
dc.citation.startPage 10589 -
dc.citation.title ACS NANO -
dc.citation.volume 10 -
dc.contributor.author Ryu, Jaegeon -
dc.contributor.author Hong, Dongki -
dc.contributor.author Shin, Myoungsoo -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T23:07:31Z -
dc.date.available 2023-12-21T23:07:31Z -
dc.date.created 2016-12-12 -
dc.date.issued 2016-11 -
dc.description.abstract Three-dimensional (3D) hyperporous silicon flakes (HPSFs) are prepared via the chemical reduction of natural clay minerals bearing metal oxides. Natural clays generally have 2D flake-like structures with broad size distributions in the lateral dimension and varied thicknesses depending on the first processing condition from nature. They have repeating layers of silicate and metal oxides in various ratios. When the clay mineral is Subjected to a reduction reaction, metal oxide layers can perform a negative catalyst for absorbing large amounts of exothermic heat from the reduction reaction of the silicate layers with metal reductant. Selectively etching out metal oxides shows hyperporous nanoflake structure containing 100 rim macropores and meso-/micropores on its framework. The resultant HPSFs are demonstrated as anode materials for lithium-ion batteries. Compared to conventional micro-Si anodes, HPSFs exhibit exceptionally high initial Coulombic efficiency over 92%. Furthermore, HPSF anodes show outstanding cycling performance (reversible capacity of 1619 mAh g(-1) at a rate of 0.5 C after 200 cycles, 95.2% retention) and rate performance (similar to 580 mAh g(-1) at a rate of 10 C) owing to their distinctive structure. -
dc.identifier.bibliographicCitation ACS NANO, v.10, no.11, pp.10589 - 10597 -
dc.identifier.doi 10.1021/acsnano.6b06828 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-84997427234 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/21011 -
dc.identifier.url http://pubs.acs.org/doi/abs/10.1021/acsnano.6b06828 -
dc.identifier.wosid 000388913100092 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor hyperporous silicon flakes -
dc.subject.keywordAuthor clay materials -
dc.subject.keywordAuthor lithium-ion battery anodes -
dc.subject.keywordAuthor high initial Coulombic efficiency -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus 3-DIMENSIONAL POROUS SILICON -
dc.subject.keywordPlus HIGH-PERFORMANCE ANODES -
dc.subject.keywordPlus SCALABLE SYNTHESIS -
dc.subject.keywordPlus NANOSTRUCTURED SILICON -
dc.subject.keywordPlus CRYSTALLINE SILICON -
dc.subject.keywordPlus ENERGY-CONVERSION -
dc.subject.keywordPlus GRAPHENE OXIDE -
dc.subject.keywordPlus NANO-SILICON -
dc.subject.keywordPlus STORAGE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.