File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 11 -
dc.citation.startPage 1600184 -
dc.citation.title ADVANCED SCIENCE -
dc.citation.volume 3 -
dc.contributor.author Oh, Pilgun -
dc.contributor.author Oh, Seung-Min -
dc.contributor.author Li, Wangda -
dc.contributor.author Myeong, Seunjun -
dc.contributor.author Cho, Jaephil -
dc.contributor.author Manthiram, Arumugam -
dc.date.accessioned 2023-12-21T23:07:49Z -
dc.date.available 2023-12-21T23:07:49Z -
dc.date.created 2016-11-28 -
dc.date.issued 2016-11 -
dc.description.abstract The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi0.7Co0.15Mn0.15O2 core and a Li-rich Li1.2-xNi0.2Mn0.6O2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With a unique chemical treatment for the activation of the Li2MnO3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. As a result, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g(-1) (at 2.0-4.5 V under C/3 rate, 1C = 200 mA g(-1)). -
dc.identifier.bibliographicCitation ADVANCED SCIENCE, v.3, no.11, pp.1600184 -
dc.identifier.doi 10.1002/advs.201600184 -
dc.identifier.issn 2198-3844 -
dc.identifier.scopusid 2-s2.0-84994525510 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/20759 -
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1002/advs.201600184/abstract -
dc.identifier.wosid 000387649100013 -
dc.language 영어 -
dc.publisher WILEY-BLACKWELL -
dc.title High-Performance Heterostructured Cathodes for Lithium-Ion Batteries with a Ni-Rich Layered Oxide Core and a Li-Rich Layered Oxide Shell -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus VOLTAGE FADE -
dc.subject.keywordPlus ENERGY DENSITY -
dc.subject.keywordPlus CAPACITY -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus NICKEL -
dc.subject.keywordPlus CHEMISTRY -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus ROLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.