File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 11085 -
dc.citation.number 43 -
dc.citation.startPage 11072 -
dc.citation.title LANGMUIR -
dc.citation.volume 32 -
dc.contributor.author Skorb, Ekaterina V. -
dc.contributor.author Mohwald, Helmuth -
dc.contributor.author Andreeva, Daria V. -
dc.date.accessioned 2023-12-21T23:07:58Z -
dc.date.available 2023-12-21T23:07:58Z -
dc.date.created 2016-11-18 -
dc.date.issued 2016-11 -
dc.description.abstract This review examines the concepts how cavitation bubble collapse affects crystalline structure, the crystallization of newly formed structures, and recrystallization. Although this subject can be discussed in a broad sense across the area of metastable crystallization, our main focus is discussing specific examples of the inorganic solids: metal, intermetallics, metal oxides, and silicon. First, the temperature up to which ultrasound heats solids is discussed. Cavitation-induced changes in the crystal size of intermetallic phases in binary AlNi (50 wt % of Ni) alloys allow an estimation of local temperatures on surfaces and in bulk material. The interplay between atomic solid-state diffusion and recrystallization during bubble collapses in heterogeneous systems is revealed. Furthermore, cavitation triggered red/ox processes at solid/liquid interfaces and their influence on recrystallization are discussed for copper aluminum nanocomposites, zinc, titanium, magnesium-based materials, and silicon. Cavitation-driven highly nonequilibrium conditions can affect the thermodynamics and kinetics of mesoscopic phase formation in heterogeneous systems and in many cases boost the macroscopic performance of composite materials, notably in catalytic alloy and photocatalytic semiconductor oxide properties, corrosion resistance, nanostructured surface biocompatibility, and optical properties. -
dc.identifier.bibliographicCitation LANGMUIR, v.32, no.43, pp.11072 - 11085 -
dc.identifier.doi 10.1021/acs.langmuir.6b02842 -
dc.identifier.issn 0743-7463 -
dc.identifier.scopusid 2-s2.0-84993968501 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/20719 -
dc.identifier.url http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b02842 -
dc.identifier.wosid 000386991700002 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Effect of Cavitation Bubble Collapse on the Modification of Solids: Crystallization Aspects -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus AQUEOUS-SOLUTIONS -
dc.subject.keywordPlus MULTIBUBBLE SONOLUMINESCENCE -
dc.subject.keywordPlus SONOCHEMICAL DEGRADATION -
dc.subject.keywordPlus ULTRASONIC CAVITATION -
dc.subject.keywordPlus HYDROGEN-STORAGE -
dc.subject.keywordPlus TEMPERATURES -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus GENERATION -
dc.subject.keywordPlus TITANIUM -
dc.subject.keywordPlus DRIVEN -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.