File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 14995 -
dc.citation.number 39 -
dc.citation.startPage 14988 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 4 -
dc.contributor.author Lee, Seyeong -
dc.contributor.author Hanif, Zahid -
dc.contributor.author Seo, Keumyoung -
dc.contributor.author Lim, Taekyung -
dc.contributor.author Shin, Hye-Min -
dc.contributor.author Park, Sungjun -
dc.contributor.author Kim, Su Hwan -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Hong, Sukwon -
dc.contributor.author Yoon. Myung-Han -
dc.contributor.author Ju, Sanghyun -
dc.date.accessioned 2023-12-21T23:10:20Z -
dc.date.available 2023-12-21T23:10:20Z -
dc.date.created 2016-10-21 -
dc.date.issued 2016-10 -
dc.description.abstract For several decades, the key challenge associated with thermochemical hydrogen generation has been the achievement of water splitting and catalyst regeneration at low temperatures while maintaining a reasonably high conversion efficiency over many cycles. Herein, we report low-temperature thermochemical hydrogen generation using hierarchically assembled iron oxide nanoarchitectures. Iron oxide nanoparticles conformally deposited onto a SnO2 nanowire forest allowed the splitting of water molecules and the production of hydrogen gas at temperatures of 400-800 degrees C, with a high specific gas-forming rate as high as similar to 25 000 mmol per g per cycle (250 min). More remarkably, deep-ultraviolet photoactivation enabled low-temperature (200 degrees C) catalyst regeneration and thereby multiple cycles of hydrogen production without any significant coalescence of the oxide nanoparticles nor substantial loss of the water-splitting efficiency. Hierarchically arranged iron oxide nanoarchitectures, in combination with photochemical catalyst regeneration, are promising for practical hydrogen generation by harvesting wasted thermal energy, even at temperatures below 500 degrees C. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.4, no.39, pp.14988 - 14995 -
dc.identifier.doi 10.1039/c6ta06172a -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-84990205514 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/20650 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2016/TA/C6TA06172A#!divAbstract -
dc.identifier.wosid 000386700600013 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRYROYAL SOC CHEMISTRY -
dc.title Hydrogen production based on a photoactivated nanowire-forest -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus BI2WO6 HIERARCHICAL MICROSPHERES -
dc.subject.keywordPlus ELECTRONIC POPULATION ANALYSIS -
dc.subject.keywordPlus LIGHT PHOTOCATALYTIC ACTIVITY -
dc.subject.keywordPlus MOLECULAR WAVE FUNCTIONS -
dc.subject.keywordPlus ZN/ZNO REDOX REACTIONS -
dc.subject.keywordPlus CERAMIC FOAM DEVICE -
dc.subject.keywordPlus THERMOCHEMICAL CYCLE -
dc.subject.keywordPlus 1ST PRINCIPLES -
dc.subject.keywordPlus WATER -
dc.subject.keywordPlus OXIDE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.