File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신태주

Shin, Tae Joo
Synchrotron Radiation Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 5353 -
dc.citation.number 38 -
dc.citation.startPage 5347 -
dc.citation.title SMALL -
dc.citation.volume 12 -
dc.contributor.author Kim, Ho Young -
dc.contributor.author Cho, Seonghun -
dc.contributor.author Sa, Young Jin -
dc.contributor.author Hwang, Sun Mi -
dc.contributor.author Park, Gu-Gon -
dc.contributor.author Shin, Tae Joo -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Yim, SD -
dc.contributor.author Joo, Sang Hoon -
dc.date.accessioned 2023-12-21T23:11:08Z -
dc.date.available 2023-12-21T23:11:08Z -
dc.date.created 2016-08-29 -
dc.date.issued 2016-10 -
dc.description.abstract Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. -
dc.identifier.bibliographicCitation SMALL, v.12, no.38, pp.5347 - 5353 -
dc.identifier.doi 10.1002/smll.201601825 -
dc.identifier.issn 1613-6810 -
dc.identifier.scopusid 2-s2.0-84990217356 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/20587 -
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1002/smll.201601825/abstract -
dc.identifier.wosid 000386100900016 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor durability -
dc.subject.keywordAuthor electrocatalysts -
dc.subject.keywordAuthor fuel cells -
dc.subject.keywordAuthor intermetallic -
dc.subject.keywordAuthor platinum -
dc.subject.keywordPlus FUEL-CELLS -
dc.subject.keywordPlus ALLOY NANOPARTICLES -
dc.subject.keywordPlus FEPT NANOPARTICLES -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus METAL -
dc.subject.keywordPlus SEGREGATION -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus CATALYSIS -
dc.subject.keywordPlus SILICA -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.