File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김용환

Kim, Yong Hwan
Enzyme and Protein Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae

Author(s)
Baek, Seung-HoKwon, Eunice Y.Kim, Yong HwanHahn, Ji-Sook
Issued Date
2016-03
DOI
10.1007/s00253-015-7174-0
URI
https://scholarworks.unist.ac.kr/handle/201301/20319
Fulltext
http://link.springer.com/article/10.1007%2Fs00253-015-7174-0
Citation
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, v.100, no.6, pp.2737 - 2748
Abstract
There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L center dot h)
Publisher
SPRINGER
ISSN
0175-7598
Keyword (Author)
Adaptive evolutionAcid toleranceD-lactic acidMetabolic engineeringSaccharomyces cerevisiae
Keyword
LACTATE-DEHYDROGENASE GENEACETIC-ACIDYEASTEXPRESSIONTOLERANCEETHANOLPHOSPHORYLATIONCULTURESVECTORSSTRESS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.