File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조욱

Jo, Wook
Sustainable Functional Ceramics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3407 -
dc.citation.number 14 -
dc.citation.startPage 3401 -
dc.citation.title JOURNAL OF THE EUROPEAN CERAMIC SOCIETY -
dc.citation.volume 36 -
dc.contributor.author Dinh, Thi Hinh -
dc.contributor.author Kang, Jin-Kyu -
dc.contributor.author Lee, Jae-Shin -
dc.contributor.author Khansur, Neamul Hayet -
dc.contributor.author Daniels, John -
dc.contributor.author Lee, Hyun Young -
dc.contributor.author Yao, Fang-Zhou -
dc.contributor.author Wang, Ke -
dc.contributor.author Li, Jing-Feng -
dc.contributor.author Han, Hyoung-Su -
dc.contributor.author Jo, Wook -
dc.date.accessioned 2023-12-21T23:08:50Z -
dc.date.available 2023-12-21T23:08:50Z -
dc.date.created 2016-07-12 -
dc.date.issued 2016-11 -
dc.description.abstract La-doped (Bi0.5Na0.41K0.09)TiO3 ceramics were synthesized using a conventional solid-state reaction route. X-ray diffraction and electric-field-induced polarization studies revealed a phase transformation from a ferroelectric to a relaxor with increasing La content. Piezoresponse force microscopy and transmission electron microscopy indicated the coexistence of ferroelectric and relaxor phases at the morphotropic phase boundary (MPB). A normalized strain of 857 pm/V was observed at the MPB at 4 kV/mm, which is comparable to that of other macro ferroelectric/relaxor composite materials. We propose that the inherent nanoscale ferroelectric/relaxor composite in the La-doped (Bi0.5Na0.41K0.09)TiO3 ceramic be the origin of such giant electric-field-induced strain. -
dc.identifier.bibliographicCitation JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, v.36, no.14, pp.3401 - 3407 -
dc.identifier.doi 10.1016/j.jeurceramsoc.2016.05.044 -
dc.identifier.issn 0955-2219 -
dc.identifier.scopusid 2-s2.0-84976412576 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/19997 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S0955221916302928 -
dc.identifier.wosid 000379888400018 -
dc.language 영어 -
dc.publisher ELSEVIER SCI LTD -
dc.title Nanoscale ferroelectric/relaxor composites: Origin of large strain in lead-free Bi-based incipient piezoelectric ceramics -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Ceramics -
dc.relation.journalResearchArea Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Lead-free piezoceramics -
dc.subject.keywordAuthor Strains -
dc.subject.keywordAuthor Domain switching -
dc.subject.keywordAuthor Relaxor -
dc.subject.keywordAuthor Composites -
dc.subject.keywordPlus TRANSMISSION ELECTRON-MICROSCOPY -
dc.subject.keywordPlus FREE PIEZOCERAMICS -
dc.subject.keywordPlus GIANT STRAIN -
dc.subject.keywordPlus PHASE-TRANSITIONS -
dc.subject.keywordPlus FIELD -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus BI0.5NA0.5TIO3-BATIO3-K0.5NA0.5NBO3 -
dc.subject.keywordPlus ENHANCEMENT -
dc.subject.keywordPlus BEHAVIOR -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.