File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김진영

Kim, Jin Young
Next Generation Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 4148 -
dc.citation.number 21 -
dc.citation.startPage 4142 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 28 -
dc.contributor.author Liu, Mengxia -
dc.contributor.author de Arquer, F. Pelayo Garcia -
dc.contributor.author Li, Yiying -
dc.contributor.author Lan, Xinzheng -
dc.contributor.author Kim, Gi-Hwan -
dc.contributor.author Voznyy, Oleksandr -
dc.contributor.author Jagadamma, Lethy Krishnan -
dc.contributor.author Abbas, Abdullah Saud -
dc.contributor.author Hoogland, Sjoerd -
dc.contributor.author Lu, Zhenghong -
dc.contributor.author Kim, Jin Young -
dc.contributor.author Amassian, Aram -
dc.contributor.author Sargent, Edward H. -
dc.date.accessioned 2023-12-21T23:40:05Z -
dc.date.available 2023-12-21T23:40:05Z -
dc.date.created 2016-06-25 -
dc.date.issued 2016-06 -
dc.description.abstract The latest advances in colloidal-quantum-dot material processing are combined with a double-sided junction architecture, which is done by efficiently incorporating indium ions in the ZnO eletrode. This platform allows the collection of all photogenerated carriers even at the maximum power point. The increased depletion width in the device facilitates full carrier collection, leading to a record 10.8% power conversion efficiency -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.28, no.21, pp.4142 - 4148 -
dc.identifier.doi 10.1002/adma.201506213 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-84962674101 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/19801 -
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1002/adma.201506213/abstract;jsessionid=358EA9F3979F746C66FA823BD7ED43F2.f03t04 -
dc.identifier.wosid 000377122400021 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Double-Sided Junctions Enable High-Performance Colloidal-Quantum-Dot Photovoltaics -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ZNO THIN-FILMS -
dc.subject.keywordPlus SOLAR-CELLS -
dc.subject.keywordPlus SOLIDS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.