File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 9 -
dc.citation.number 11933 -
dc.citation.startPage 1 -
dc.citation.title SCIENTIFIC REPORTS -
dc.citation.volume 5 -
dc.contributor.author Park, Joonmo -
dc.contributor.author Lee, Jae Won -
dc.contributor.author Ye, Byeong Uk -
dc.contributor.author Chun, Sung He -
dc.contributor.author Joo, Sang Hoon -
dc.contributor.author Park, Hyunwoong -
dc.contributor.author Lee, Heon -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Kim, Myung Hwa -
dc.contributor.author Baik, Jeong Min -
dc.date.accessioned 2023-12-22T01:07:21Z -
dc.date.available 2023-12-22T01:07:21Z -
dc.date.created 2016-01-11 -
dc.date.issued 2015-07 -
dc.description.abstract Growth mechanism of chemically-driven RuO2 nanowires is explored and used to fabricate three-dimensional RuO2 branched Au-TiO2 nanowire electrodes for the photostable solar water oxidation. For the real time structural evolution during the nanowire growth, the amorphous RuO2 precursors (Ru(OH)(3)center dot H2O) are heated at 180 degrees C, producing the RuO2 nanoparticles with the tetragonal crystallographic structure and Ru enriched amorphous phases, observed through the in-situ synchrotron x-ray diffraction and the high-resolution transmission electron microscope images. Growth then proceeds by Ru diffusion to the nanoparticles, followed by the diffusion to the growing surface of the nanowire in oxygen ambient, supported by the nucleation theory. The RuO2 branched Au-TiO2 nanowire arrays shows a remarkable enhancement in the photocurrent density by approximately 60% and 200%, in the UV-visible and Visible region, respectively, compared with pristine TiO2 nanowires. Furthermore, there is no significant decrease in the device's photoconductance with UV-visible illumination during 1 day, making it possible to produce oxygen gas without the loss of the photoactvity. -
dc.identifier.bibliographicCitation SCIENTIFIC REPORTS, v.5, no.11933, pp.1 - 9 -
dc.identifier.doi 10.1038/srep11933 -
dc.identifier.issn 2045-2322 -
dc.identifier.scopusid 2-s2.0-84936749019 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/18115 -
dc.identifier.url http://www.nature.com/articles/srep11933 -
dc.identifier.wosid 000357449500002 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Structural Evolution of Chemically-Driven RuO2 Nanowires and 3-Dimensional Design for Photo-Catalytic Applications -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus THERMAL EVAPORATION -
dc.subject.keywordPlus TIO2 NANORODS -
dc.subject.keywordPlus NANOSTRUCTURES -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus COMPOSITE -
dc.subject.keywordPlus ROUTE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.