File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이성국

Lee, Sung Kuk
Synthetic Biology & Metabolic Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 8410 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 6 -
dc.contributor.author Kim, Sangwoo -
dc.contributor.author Jang, Yu-Sin -
dc.contributor.author Ha, Sung-Chul -
dc.contributor.author Ahn, Jae-Woo -
dc.contributor.author Kim, Eun-Jung -
dc.contributor.author Lim, Jae Hong -
dc.contributor.author Cho, Changhee -
dc.contributor.author Ryu, Yong Shin -
dc.contributor.author Lee, Sung Kuk -
dc.contributor.author Lee, Sang Yup -
dc.contributor.author Kim, Kyung-Jin -
dc.date.accessioned 2023-12-22T00:43:37Z -
dc.date.available 2023-12-22T00:43:37Z -
dc.date.created 2016-01-06 -
dc.date.issued 2015-09 -
dc.description.abstract Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHLV77Q/N153Y/A286K mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.6, pp.8410 -
dc.identifier.doi 10.1038/ncomms9410 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-84942162949 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/18061 -
dc.identifier.url http://www.nature.com/ncomms/2015/150922/ncomms9410/full/ncomms9410.html -
dc.identifier.wosid 000363138400002 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus PEROXISOMAL 3-KETOACYL-COA THIOLASE -
dc.subject.keywordPlus FERMENTATIVE BUTANOL PRODUCTION -
dc.subject.keywordPlus ALLOSTERIC DISULFIDE BONDS -
dc.subject.keywordPlus CRYSTAL-STRUCTURE -
dc.subject.keywordPlus SACCHAROMYCES-CEREVISIAE -
dc.subject.keywordPlus BIOSYNTHETIC THIOLASE -
dc.subject.keywordPlus ESCHERICHIA-COLI -
dc.subject.keywordPlus SUBSTRATE-BINDING -
dc.subject.keywordPlus DEPENDENT ENZYME -
dc.subject.keywordPlus SOLVENTOGENESIS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.