File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 5 -
dc.citation.startPage 052304 -
dc.citation.title PHYSICAL REVIEW B -
dc.citation.volume 92 -
dc.contributor.author Dell, Zachary E. -
dc.contributor.author Tsang, Boyce -
dc.contributor.author Jiang, Lingxiang -
dc.contributor.author Granick, Steve -
dc.contributor.author Schweizer, Kenneth S. -
dc.date.accessioned 2023-12-22T00:37:30Z -
dc.date.available 2023-12-22T00:37:30Z -
dc.date.created 2015-11-27 -
dc.date.issued 2015-11 -
dc.description.abstract The spatially resolved diffusive dynamic cross correlations of a pair of colloids in dense quasi-two-dimensional monolayers of identical particles are studied experimentally and theoretically at early times where motion is Fickian. In very dense systems where strong oscillatory equilibrium packing correlations are present, we find an exponential decay of the dynamic cross correlations on small and intermediate length scales. At large separations where structure becomes random, an apparent power law decay with an exponent of approximately -2.2 is observed. For a moderately dense suspension where local structural correlations are essentially absent, this same apparent power law decay is observed over all probed interparticle separations. A microscopic nonhydrodynamic theory is constructed for the dynamic cross correlations which is based on interparticle frictional effects and effective structural forces. Hydrodynamics enters only via setting the very short-time single-particle self-diffusion constant. No-adjustable-parameter quantitative predictions of the theory for the dynamic cross correlations are in good agreement with experiment over all length scales. The origin of the long-range apparent power law is the influence of the constraint of fixed interparticle separation on the amplitude of the mean square force exerted on the two tagged particles by the surrounding fluid. The theory is extended to study high-packing-fraction 3D hard sphere fluids. The same pattern of an oscillatory exponential form of the dynamic cross correlation function is predicted in the structural regime, but the long-range tail decays faster than in monolayers with an exponent of -3 -
dc.identifier.bibliographicCitation PHYSICAL REVIEW B, v.92, no.5, pp.052304 -
dc.identifier.doi 10.1103/PhysRevE.92.052304 -
dc.identifier.issn 2469-9950 -
dc.identifier.scopusid 2-s2.0-84947233693 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17911 -
dc.identifier.url http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.052304 -
dc.identifier.wosid 000364216400005 -
dc.language 영어 -
dc.publisher AMER PHYSICAL SOC -
dc.title Correlated two-particle diffusion in dense colloidal suspensions at early times: Theory and comparison to experiment -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Physics, Fluids & Plasmas; Physics, Mathematical -
dc.relation.journalResearchArea Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HYDRODYNAMIC INTERACTIONS -
dc.subject.keywordPlus CONCENTRATED SUSPENSION -
dc.subject.keywordPlus COOPERATIVE DYNAMICS -
dc.subject.keywordPlus SPHERES -
dc.subject.keywordPlus LIQUIDS -
dc.subject.keywordPlus MICRORHEOLOGY -
dc.subject.keywordPlus SCATTERING -
dc.subject.keywordPlus PARTICLES -
dc.subject.keywordPlus NEUTRONS -
dc.subject.keywordPlus EQUATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.