File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 86 -
dc.citation.startPage 77 -
dc.citation.title NANO ENERGY -
dc.citation.volume 14 -
dc.contributor.author Kim, Young-Soo -
dc.contributor.author Xie, Yannan -
dc.contributor.author Wen, Xiaonan -
dc.contributor.author Wanga, Sihong -
dc.contributor.author Kim, Sang Jae -
dc.contributor.author Song, Hyun-Kon -
dc.contributor.author Wanga, Zhong Lin -
dc.date.accessioned 2023-12-22T01:13:30Z -
dc.date.available 2023-12-22T01:13:30Z -
dc.date.created 2015-11-24 -
dc.date.issued 2015-05 -
dc.description.abstract A self-charging power cell (SCPC) is a structure that hybridizes the mechanisms for energy conversion and storage into one process through which mechanical energy can be directly converted into electrochemical energy. A key structure of an SCPC is the use of a polyvinylidene fluoride (PVDF) piezo-separator. Herein, we have fabricated a piezoelectric β-form PVDF separator with a highly porous architecture by introducing ZnO particles. The electrochemical charge/discharge performance of this SCPC was greatly enhanced at lower discharge rates compared to highly stretched (high-β-content) or less porous PVDF membranes. The lower charge-transfer resistance of this well-developed porous piezo-separator is the main factor that facilitated the transport of Li+ ions without sacrificing piezoelectric performance. This study reveals a novel approach for improving the performance of SCPCs. -
dc.identifier.bibliographicCitation NANO ENERGY, v.14, pp.77 - 86 -
dc.identifier.doi 10.1016/j.nanoen.2015.01.006 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-84946494008 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17877 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S2211285515000075 -
dc.identifier.wosid 000356984500007 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Energy harvesting -
dc.subject.keywordAuthor Energy storage -
dc.subject.keywordAuthor Lithium-ion secondary batteries -
dc.subject.keywordAuthor Piezoelectricmem-brane -
dc.subject.keywordAuthor Self-charging -
dc.subject.keywordPlus ENERGY-CONVERSION -
dc.subject.keywordPlus BETA-PHASE -
dc.subject.keywordPlus V OUTPUT -
dc.subject.keywordPlus NANOGENERATOR -
dc.subject.keywordPlus TRANSFORMATION -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus SAFETY -
dc.subject.keywordPlus ALPHA -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.