File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

고현협

Ko, Hyunhyub
Functional Nanomaterials & Devices Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 21561 -
dc.citation.number 43 -
dc.citation.startPage 21553 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 3 -
dc.contributor.author Senthilkumar, Baskar -
dc.contributor.author Khan, Ziyauddin -
dc.contributor.author Park, Seungyoung -
dc.contributor.author Kim, Kyoungho -
dc.contributor.author Ko, Hyunhyub -
dc.contributor.author Kim, Youngsik -
dc.date.accessioned 2023-12-22T00:37:48Z -
dc.date.available 2023-12-22T00:37:48Z -
dc.date.created 2015-11-24 -
dc.date.issued 2015-11 -
dc.description.abstract An aqueous Na-ion based hybrid capacitor has been successfully developed by using highly porous graphitic carbon (HPGC) derived from waste writing paper and a new electrode material as a negative and positive electrode, respectively. HPGC was prepared via hydrothermal carbonization and subsequent KOH activation of waste writing paper which showed a highly porous stacked sheet-like morphology with an exceptionally high BET specific surface area (1254 m(2) g(-1)). HPGC exhibited typical electrical double layer capacitor (EDLC) behavior with a high specific capacitance of 384 F g(-1) and good negative working potential (-1.0 V) in an aqueous electrolyte. On the other hand, Ni2P2O7 was synthesized by a simple co-precipitation technique and tested as a cathode material which delivered a maximum specific capacitance of 1893 F g(-1) at 2 A g(-1) current density. The fabricated HPGCMi(2)P(2)O(7) hybrid device displayed excellent cyclic stability up to 2000 cycles and delivered a maximum energy density of 65 W h kg-1 at 800 W kg(-1) power density in a Na-ion based aqueous electrolyte. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.3, no.43, pp.21553 - 21561 -
dc.identifier.doi 10.1039/c5ta04737d -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-84946011591 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17876 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2015/TA/C5TA04737D#!divAbstract -
dc.identifier.wosid 000364020400019 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRYROYAL SOC CHEMISTRY -
dc.title Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HIGH-ENERGY DENSITY -
dc.subject.keywordPlus ELECTROCHEMICAL CAPACITORS -
dc.subject.keywordPlus ASYMMETRIC SUPERCAPACITORS -
dc.subject.keywordPlus NICKEL-HYDROXIDE -
dc.subject.keywordPlus SOLID-STATE -
dc.subject.keywordPlus CONTROLLED FABRICATION -
dc.subject.keywordPlus ULTRAHIGH CAPACITANCE -
dc.subject.keywordPlus ELECTRODE MATERIAL -
dc.subject.keywordPlus FACILE SYNTHESIS -
dc.subject.keywordPlus CATHODE MATERIAL -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.