File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage S114 -
dc.citation.startPage S108 -
dc.citation.title CURRENT APPLIED PHYSICS -
dc.citation.volume 15 -
dc.contributor.author Kim, Jong Hun -
dc.contributor.author Yuk, Youngji -
dc.contributor.author Joo, Hye Sook -
dc.contributor.author Cheon, Jae Yeong -
dc.contributor.author Choi, Han Shin -
dc.contributor.author Joo, Sang Hoon -
dc.contributor.author Park, Jeong Young -
dc.date.accessioned 2023-12-22T00:44:00Z -
dc.date.available 2023-12-22T00:44:00Z -
dc.date.created 2015-11-06 -
dc.date.issued 2015-09 -
dc.description.abstract We report an atomic force microscopy (AFM) based method to characterize the adhesion between metal nanoparticles and carbon support that plays an important role in determining the durability of fuel cells. This adhesion is related to the electrochemical active surface area (ECSA). Force-distance curves measured with a Pt-coated AFM tip on the surface of the support allows us to probe the adhesion between a Pt nanoparticle and the support because an asperity between a Pt-coated AFM tip and carbon support can mimic the nanoscale interface between Pt nanoparticles and carbon. We found that acid-based surface treatment of the carbon support increases the adhesion force by a factor of 4, compared with the as-received carbon support. Meanwhile, surface treatment using acid on the carbon support can lead to a higher ECSA, which is consistent with the higher adhesion force probed with AFM. We attribute the higher adhesion between the Pt probe and the acid-treated carbon to stronger chemical interaction by the C/O functional groups. (C) 2015 Elsevier B.V. All rights reserved -
dc.identifier.bibliographicCitation CURRENT APPLIED PHYSICS, v.15, pp.S108 - S114 -
dc.identifier.doi 10.1016/j.cap.2015.04.031 -
dc.identifier.issn 1567-1739 -
dc.identifier.scopusid 2-s2.0-84942364580 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17743 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S1567173915001509 -
dc.identifier.wosid 000362917600021 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE BV -
dc.title Nanoscale adhesion between Pt nanoparticles and carbon support and its influence on the durability of fuel cells -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Proton exchange membrane fuel cell -
dc.subject.keywordAuthor Platinum -
dc.subject.keywordAuthor Nanocatalyst -
dc.subject.keywordAuthor Durability -
dc.subject.keywordAuthor Acidic treatment -
dc.subject.keywordAuthor Atomic force microscopy -
dc.subject.keywordAuthor Friction -
dc.subject.keywordAuthor Adhesion -
dc.subject.keywordPlus ORIENTED PYROLYTIC-GRAPHITE -
dc.subject.keywordPlus DECAGONAL QUASI-CRYSTALS -
dc.subject.keywordPlus X-RAY PHOTOELECTRON -
dc.subject.keywordPlus SURFACE-AREA LOSS -
dc.subject.keywordPlus PHOSPHORIC-ACID -
dc.subject.keywordPlus OXYGEN REDUCTION -
dc.subject.keywordPlus FORCE MICROSCOPY -
dc.subject.keywordPlus CATALYST LAYER -
dc.subject.keywordPlus ELECTROLYTE -
dc.subject.keywordPlus ELECTROCATALYSTS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.