File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박노정

Park, Noejung
Computational Physics & Electronic Structure Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 6918 -
dc.citation.number 10 -
dc.citation.startPage 6914 -
dc.citation.title NANO LETTERS -
dc.citation.volume 15 -
dc.contributor.author Son, Yoonkook -
dc.contributor.author Son, Yeonguk -
dc.contributor.author Choi, Min -
dc.contributor.author Ko, Minseong -
dc.contributor.author Chae, Sujong -
dc.contributor.author Park, Noejung -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-22T00:40:11Z -
dc.date.available 2023-12-22T00:40:11Z -
dc.date.created 2015-11-03 -
dc.date.issued 2015-10 -
dc.description.abstract The Kirkendall effect is a simple, novel phenomenon that may be applied for the synthesis of hollow nanostructures with designed pore structures and chemical composition. We demonstrate the use of the Kirkendall effect for silicon (Si) and germanium (Ge) nanowires (NWs) and nanoparticles (NPs) via introduction of nanoscale surface layers of SiO2 and GeO2, respectively. Depending on the reaction time, Si and Ge atoms gradually diffuse outward through the oxide layers, with pore formation in the nanostructural cores. Through the Kirkendall effect, NWs and NPs were transformed into nanotubes (NTs) and hollow NPs, respectively. The mechanism of the Kirkendall effect was studied via quantum molecular dynamics calculations. The hollow products demonstrated better electrochemical performance than their solid counterparts because the pores developed in the nanostructures resulted in lower external pressures during lithiation. -
dc.identifier.bibliographicCitation NANO LETTERS, v.15, no.10, pp.6914 - 6918 -
dc.identifier.doi 10.1021/acs.nanolett.5b02842 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-84944395288 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17688 -
dc.identifier.url http://pubs.acs.org/doi/10.1021/acs.nanolett.5b02842 -
dc.identifier.wosid 000363003100095 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Hollow Silicon Nanostructures via the Kirkendall Effect -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor hollow nanostructure -
dc.subject.keywordAuthor Kirkendall effect -
dc.subject.keywordAuthor lithium ion batteries -
dc.subject.keywordAuthor self-organization -
dc.subject.keywordAuthor silicon -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus LITHIATION -
dc.subject.keywordPlus DEPOSITION -
dc.subject.keywordPlus NANOTUBES -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus IN-SITU TEM -
dc.subject.keywordPlus ANODES -
dc.subject.keywordPlus NANOPARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.