File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이덕중

Lee, Deokjung
Computational Reactor physics & Experiment Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Feasibility study on ultralong-cycle operation and material performance for compact liquid metal-cooled fast reactors: A review work

Author(s)
Tak, TaewooChoe, JiwonJeong, YongjinKim, Taek KyumLee, DeokjungHong, Ser Gi
Issued Date
2015-11
DOI
10.1002/er.3384
URI
https://scholarworks.unist.ac.kr/handle/201301/17641
Fulltext
http://onlinelibrary.wiley.com/doi/10.1002/er.3384/abstract
Citation
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.39, no.14, pp.1859 - 1878
Abstract
This paper reviews the feasibility of ultralong-cycle operation on a compact liquid metal-cooled fast reactor (LMR) firstly by assessing the operation of a long-life fast reactor core and secondly by evaluating material performance in respect to both long-cycle operation and compact-size fast reactor. Many kinds of reactor concepts have been proposed, and LMR and small modular reactor (SMR) are the issued leading technologies for generation four (Gen-IV) reactor system development. The breed-and-burn strategy was proposed as a core burning strategy to operate a long cycle, and it has been evaluated in this paper with two reactor concepts: constant axial shape of neutron flux, nuclide densities, and power shape during life of energy and ultralong cycle fast reactor. In addition, Super-Safe, Small, and Simple and small modular fast reactor, compact LMR concepts, have been simulated to evaluate their long-life operation strategies. For the other practical issues, the materials for fuel, coolant, and structure have been identified and some of them are selected to have their performance optimized specifically for compact LMR with a long-cycle operation. It is believed that this comprehensive review will propose a proper direction for future reactor development and will be followed by the next step research for a complete reactor model with the other reactor components.
Publisher
WILEY-BLACKWELL
ISSN
0363-907X
Keyword (Author)
LMRSMRlong-cycle operationbreed-and-burnmaterial performance

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.