File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김광수

Kim, Kwang S.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Highly selective CO2 adsorption performance of carbazole based microporous polymers

Author(s)
Saleh, MuhammadKim, Kwang S.
Issued Date
2015-04
DOI
10.1039/c5ra06767g
URI
https://scholarworks.unist.ac.kr/handle/201301/17394
Fulltext
http://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/C5RA06767G#!divAbstract
Citation
RSC ADVANCES, v.5, no.52, pp.41745 - 41750
Abstract
Non-coplanar shaped carbazole based monomers were used to synthesize microporous polycarbazole materials utilizing an inexpensive FeCl3 catalyzed reaction. The reactions proceed through direct oxidative coupling and extensive crosslinking polymerization routes. The obtained porous networks exhibit a maximum Brunauer-Emmett-Teller specific surface area of 946 m(2) g(-1) with a total pore volume of 0.941 cm(3) g(-1), and display a high carbon dioxide uptake capacity (up to 13.6 wt%) at 273 K and 1 atm. Selective adsorption of CO2 over N-2 calculated using the ideal adsorbed solution theory (IAST) shows that these networks display enhanced selectivity with a maximum value of 155 at 298 K. Remarkably, in contrast to other materials, this value is significantly higher than the selectivity values (102-107) obtained at 273 K. Introduction of the electron rich carbazole structure into the aromatic system and pore geometry contribute to higher adsorption enthalpy which in turn leads to high selective adsorption values. These polymeric networks also show a high working capacity with reasonably high regenerability factors. The combination of a simple inexpensive synthesis approach and high selective adsorption make these materials potential candidates for CO2 storage, selective gas adsorption, and other environmental applications
Publisher
ROYAL SOC CHEMISTRY
ISSN
2046-2069
Keyword
CARBON-DIOXIDE CAPTUREPOROUS ORGANIC POLYMERSOXIDATIVE COUPLING POLYMERIZATIONGAS-STORAGEINTRINSIC MICROPOROSITYCONJUGATED POLYMERSLINKED POLYMERSSURFACE-AREASEPARATIONFRAMEWORKS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.