File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박노정

Park, Noejung
Computational Physics & Electronic Structure Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 732 -
dc.citation.number 6 -
dc.citation.startPage 727 -
dc.citation.title CURRENT APPLIED PHYSICS -
dc.citation.volume 15 -
dc.contributor.author Shin, Dongbin -
dc.contributor.author Thapa, Ranjit -
dc.contributor.author Park, Noejung -
dc.date.accessioned 2023-12-22T01:10:49Z -
dc.date.available 2023-12-22T01:10:49Z -
dc.date.created 2015-08-24 -
dc.date.issued 2015-06 -
dc.description.abstract Dioxygen adsorption and activation on metal-ligand systems are the key elements for biological oxidative metabolisms and also catalyst design for the oxygen reduction reaction (ORR). We show, through first-principles calculations, that similar dioxygen adducts can form on metal-free n-type doped hexagonal boron nitride (h-BN) nanostructures. The density of electron donors determines the charge state of dioxygen, either in superoxo and peroxo, which exactly correlates with the 'end-on' and 'side-on' configurations, respectively. Activated O-2 in the superoxo state shows a better catalytic performance possibly mediating the direct four-electron reduction. The formation of hydrogen peroxide (H2O2) is practically eliminated, and thus we suggest that a surface coated with the n-type doped h-BN can be the basis for an ORR catalyst with increased stability. (C) 2015 Elsevier B.V. All rights reserved. -
dc.identifier.bibliographicCitation CURRENT APPLIED PHYSICS, v.15, no.6, pp.727 - 732 -
dc.identifier.doi 10.1016/j.cap.2015.03.005 -
dc.identifier.issn 1567-1739 -
dc.identifier.scopusid 2-s2.0-84941751707 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17208 -
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S1567173915000826 -
dc.identifier.wosid 000353391400012 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE BV -
dc.title An oxygen reduction catalytic process through superoxo adsorption states on n-type doped h-BN: A first-principles study -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Catalyst -
dc.subject.keywordAuthor Oxygen reduction reaction -
dc.subject.keywordAuthor Fuel cell -
dc.subject.keywordAuthor Overpotential -
dc.subject.keywordAuthor DFT -
dc.subject.keywordPlus DENSITY-FUNCTIONAL THEORY -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus WAVE BASIS-SET -
dc.subject.keywordPlus ELECTRONIC-STRUCTURE -
dc.subject.keywordPlus COMPLEXES -
dc.subject.keywordPlus DIOXYGEN -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus O-2 -
dc.subject.keywordPlus MECHANISM -
dc.subject.keywordPlus OXIDATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.