File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2084 -
dc.citation.number 7 -
dc.citation.startPage 2075 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 8 -
dc.contributor.author Lee, Jung-In -
dc.contributor.author Ko, Younghoon -
dc.contributor.author Shin, Myoungsoo -
dc.contributor.author Song, Hyun-Kon -
dc.contributor.author Choi, Nam-Soon -
dc.contributor.author Kim, Min Gyu -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-22T01:07:30Z -
dc.date.available 2023-12-22T01:07:30Z -
dc.date.created 2015-09-11 -
dc.date.issued 2015-07 -
dc.description.abstract Nanostructured Si-based materials are key building blocks for next-generation energy storage devices. To meet the requirements of practical energy storage devices, Si-based materials should exhibit high-power, low volume change, and high tap density. So far, there have been no reliable materials reported satisfying all of these requirements. Here, we report a novel Si-based multicomponent design, in which the Si core is covered with multifunctional shell layers. The synergistic coupling of Si with the multifunctional shell provides vital clues for satisfying all Si anode requirements for practical batteries. The Si-based multicomponent anode delivers a high capacity of similar to 1000 mA h g(-1), a highly stable cycling retention (similar to 65% after 1000 cycles at 1 C), an excellent rate capability (similar to 800 mA h g(-1) at 10 C), and a remarkably suppressed volume expansion (12% after 100 cycles). Our synthetic process is simple, low-cost, and safe, facilitating new methods for developing electrode materials for practical energy storage. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.8, no.7, pp.2075 - 2084 -
dc.identifier.doi 10.1039/c5ee01493j -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-84936857116 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/17002 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2015/EE/C5EE01493J#!divAbstract -
dc.identifier.wosid 000357541300020 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus FLUOROETHYLENE CARBONATE -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus STRUCTURAL-CHANGES -
dc.subject.keywordPlus ENERGY-STORAGE -
dc.subject.keywordPlus LI -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus LITHIATION -
dc.subject.keywordPlus DIFFUSION -
dc.subject.keywordPlus TEMPERATURE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.