File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

유자형

Ryu, Ja-Hyoung
Supramolecular Nanomaterials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2714 -
dc.citation.number 9 -
dc.citation.startPage 2701 -
dc.citation.title BIOMACROMOLECULES -
dc.citation.volume 16 -
dc.contributor.author Palanikumar, L. -
dc.contributor.author Kim, Ho Young -
dc.contributor.author Oh, Joon Young -
dc.contributor.author Thoma, Ajesh P. -
dc.contributor.author Choi, Eun Seong -
dc.contributor.author Jeena, M. T. -
dc.contributor.author Joo, Sang Hoon -
dc.contributor.author Ryu, Ja-Hyoung -
dc.date.accessioned 2023-12-22T00:46:11Z -
dc.date.available 2023-12-22T00:46:11Z -
dc.date.created 2015-08-17 -
dc.date.issued 2015-09 -
dc.description.abstract Advances in water-insoluble drug delivery systems are limited by selective delivery, loading capacity, and colloidal and encapsulation stability. We have developed a simple and robust hydrophobic-drug delivery platform with different types of hydrophobic chemotherapeutic agents using a noncovalent gatekeeper’s technique with mesoporous silica nanoparticles (MSNs). The unmodified pores offer a large volume of drug loading capacity, and the loaded drug is stably encapsulated until it enters the cancer cells owing to the noncovalently bound polymer gatekeeper. In the presence of polymer gatekeepers, the drug-loaded mesoporous silica nanoparticles showed enhanced colloidal stability. The simplicity of drug encapsulation allows any combination of small chemotherapeutics to be coencapsulated and thus produce synergetic therapeutic effects. The disulfide moiety facilitates decoration of the nanoparticles with cysteine containing ligands through thiol-disulfide chemistry under mild conditions. To show the versatility of drug targeting to cancer cells, we decorated the surface of the shell-cross-linked nanoparticles with two types of peptide ligands, SP94 and RGD. The nanocarriers reported here can release encapsulated drugs inside the reducing microenvironment of cancer cells via degradation of the polymer shell, leading to cell death. -
dc.identifier.bibliographicCitation BIOMACROMOLECULES, v.16, no.9, pp.2701 - 2714 -
dc.identifier.doi 10.1021/acs.biomac.5b00589 -
dc.identifier.issn 1525-7797 -
dc.identifier.scopusid 2-s2.0-84941621479 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/16863 -
dc.identifier.url http://pubs.acs.org/doi/10.1021/acs.biomac.5b00589 -
dc.identifier.wosid 000361341700016 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Noncovalent Surface Locking of Mesoporous Silica Nanoparticles for Exceptionally High Hydrophobic Drug Loading and Enhanced Colloidal Stability -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science -
dc.relation.journalResearchArea Biochemistry & Molecular Biology; Chemistry; Polymer Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus CANCER-THERAPY -
dc.subject.keywordPlus IN-VIVO -
dc.subject.keywordPlus POLYMERIC MICELLES -
dc.subject.keywordPlus DELIVERY PLATFORM -
dc.subject.keywordPlus TARGETED DELIVERY -
dc.subject.keywordPlus INSOLUBLE DRUGS -
dc.subject.keywordPlus CAMPTOTHECIN -
dc.subject.keywordPlus RELEASE -
dc.subject.keywordPlus NANOCARRIERS -
dc.subject.keywordPlus CHEMOTHERAPY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.