BROWSE

Related Researcher

Author's Photo

Suh, Pann-Ghill
BioSignal Network Lab (BSN)
Research Interests
  • Signal transduction, cancer, metabolism, phospholipase C

ITEM VIEW & DOWNLOAD

O-GlcNAc cycling enzymes control vascular development of the placenta by modulating the levels of HIF-1α

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
O-GlcNAc cycling enzymes control vascular development of the placenta by modulating the levels of HIF-1α
Author
Yang, Yong RyoulJang, Hyun-JunLee, Yong HwaKim, Il ShinLee, HoRyu, Sung HoSuh, Pann-Ghill
Issue Date
2015-10
Publisher
W B SAUNDERS CO LTD
Citation
PLACENTA, v.36, pp.1063 - 1068
Abstract
Introduction: Placental vasculogenesis is essential for fetal growth and development, and is affected profoundly by oxygen tension (hypoxia). Hypoxia-inducible factor-1 alpha: (HIF-1 alpha), which is stabilized at the protein level in response to hypoxia, is essential for vascular morphogenesis in the placenta. Many studies suggested that responses to hypoxia is influenced by O-GlcNAcylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that catalyze the addition and removal of O-GlcNAc respectively. Methods: We generated OGA deficient mice and evaluated OGA(-/-) placentas. The analysis of OGA(-/-) placentas was focused on morphological change and placental vasculogenesis. HIF-1 alpha: protein stability or transcriptional activity under dysregulation of O-GlcNAcylation were evaluated by Western blot, RT-qPCR and luciferase reporter gene assays in MEFs or MS1 cell line. Results: Deletion of OGA results in defective placental vasculogenesis. OGA(-/-) placentas showed an abnormal placental shape and reduced vasculature in the labyrinth, which caused a developmental delay in the embryos. OGA deletion, which elevates O-GlcNAcylation and downregulates O-GlcNAc transferase (OGT), suppressed HIF-1 alpha stabilization and the transcription of its target genes. In contrast, the overexpression of O-GlcNAc cycling enzymes enhanced the expression and transcriptional activity of HIF-1 alpha. Discussion: These results suggest that OGA plays a critical role in placental vasculogenesis by modulating HIP-1 alpha stabilization. Control of O-GlcNAcylation is essential for placental development. (C) 2015 Elsevier Ltd. All rights reserved.
URI
https://scholarworks.unist.ac.kr/handle/201301/16802
URL
http://www.sciencedirect.com/science/article/pii/S014340041530028X
DOI
10.1016/j.placenta.2015.08.001
ISSN
0143-4004
Appears in Collections:
BIO_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU