File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재필

Cho, Jaephil
Nano Energy Storage Material Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 13 -
dc.citation.startPage 1500274 -
dc.citation.title ADVANCED ENERGY MATERIALS -
dc.citation.volume 5 -
dc.contributor.author Liu, Wen -
dc.contributor.author Oh, Pilgun -
dc.contributor.author Liu, Xien -
dc.contributor.author Myeong, Seungjun -
dc.contributor.author Cho, Woongrae -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-22T01:07:46Z -
dc.date.available 2023-12-22T01:07:46Z -
dc.date.created 2015-08-31 -
dc.date.issued 2015-07 -
dc.description.abstract Li-rich layered metal oxides have attracted much attention for their high energy density but still endure severe capacity fading and voltage decay during cycling, especially at elevated temperature. Here, facile surface treatment of Li1.17Ni0.17Co0.17Mn0.5O2 (0.4Li(2)MnO3 center dot 0.6LiNi(1/3)Co(1/3)Mn(1/3)O(2)) spherical cathode material is designed to address these drawbacks by hybrid surface protection layers composed of Mg2+ pillar and Li-Mg-PO4 layer. As a result, the surface coated Li-rich cathode material exhibits much enhanced cycling stability at 60 degrees C, maintaining 72.6% capacity retention (180 mAh g(-1)) between 3.0 and 4.7 V after 250 cycles. More importantly, 88.7% average discharge voltage retention can be obtained after the rigorous cycle test. The strategy developed here with novel hydrid surface protection effect can provide a vital approach to inhibit the undesired side reactions and structural deterioration of Li-rich cathode materials and may also be useful for other layered oxides to increase their cycling stability at elevated temperature -
dc.identifier.bibliographicCitation ADVANCED ENERGY MATERIALS, v.5, no.13, pp.1500274 -
dc.identifier.doi 10.1002/aenm.201500274 -
dc.identifier.issn 1614-6832 -
dc.identifier.scopusid 2-s2.0-84937024497 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/16407 -
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1002/aenm.201500274/abstract -
dc.identifier.wosid 000357880100007 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Countering Voltage Decay and Capacity Fading of Lithium-Rich Cathode Material at 60 degrees C by Hybrid Surface Protection Layers -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LI-ION BATTERIES -
dc.subject.keywordPlus DOT (1-X)LIMO2 M -
dc.subject.keywordPlus COMPOSITE CATHODE -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus ELEVATED-TEMPERATURE -
dc.subject.keywordPlus STRUCTURAL-CHANGES -
dc.subject.keywordPlus MANGANESE OXIDES -
dc.subject.keywordPlus ENERGY-STORAGE -
dc.subject.keywordPlus NI -
dc.subject.keywordPlus ELECTRODES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.