File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이창영

Lee, Chang Young
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Evidence for High-Efficiency Exciton Dissociation at Polymer/Single-Walled Carbon Nanotube Interfaces in Planar Nano-heterojunction Photovoltaics

Alternative Title
Evidence for High-Efficiency Exciton Dissociation at Polymer/Single-Walled Carbon Nanotube Interfaces in Planar Nano-heterojunction Photovoltaics
Author(s)
Ham, Moon-HoPaulus, Geraldine L. C.Lee, Chang YoungSong, ChangsikKalantar-zadeh, KouroshChoi, WonjoonHan, Jae-HeeStrano, Michael S.
Issued Date
2010-10
DOI
10.1021/nn1019384
URI
https://scholarworks.unist.ac.kr/handle/201301/12306
Fulltext
http://pubs.acs.org/doi/pdf/10.1021/nn1019384
Citation
ACS NANO, v.4, no.10, pp.6251 - 6259
Abstract
There is significant interest in combining carbon nanotubes with semiconducting polymers for photovoltaic applications because of potential advantages from smaller exciton transport lengths and enhanced charge separation. However, to date, bulk heterojunction (BM) devices have demonstrated relatively poor efficiencies, and little is understood about the polymer/nanotube junction. To investigate this interface, we fabricate a planar nano-heterojunction comprising well-isolated millimeter-long single-walled carbon nanotubes underneath a poly(3-hexylthiophene) (P3HT) layer. The resulting junctions display photovoltaic efficiencies per nanotube ranging from 3% to 3.82%, which exceed those of polymer/nanotube BM by a factor of 50-100. The increase is attributed to the absence of aggregate formation in this planar device geometry. It is shown that the polymer/nanotube interface itself is responsible for exciton dissociation. Typical open-circuit voltages are near 0.5 V with All factors of 0.25-0.3, which are largely invariant with the number of nanotubes per device and P3HT thickness. A maximum efficiency is obtained for a 60 nm-thick P3HT layer, which is predicted by a Monte Carlo simulation that takes into account exciton generation, transport, recombination, and dissociation. This platform is promising for further understanding the potential role of polymer/nanotube interfaces for photovoltaic applications
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.