File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 7123 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 6 -
dc.contributor.author Jeon, In-Yup -
dc.contributor.author Choi, Min -
dc.contributor.author Choi, Hyun-Jung -
dc.contributor.author Jung, Sun-Min -
dc.contributor.author Kim, Min-Jung -
dc.contributor.author Seo, Jeong-Min -
dc.contributor.author Bae, Seo-Yoon -
dc.contributor.author Yoo, Seonyoung -
dc.contributor.author Kim, Guntae -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Park, Noejung -
dc.contributor.author Baek, Jong-Beom -
dc.date.accessioned 2023-12-22T01:15:28Z -
dc.date.available 2023-12-22T01:15:28Z -
dc.date.created 2015-06-29 -
dc.date.issued 2015-05 -
dc.description.abstract Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.6, pp.7123 -
dc.identifier.doi 10.1038/ncomms8123 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-84930207230 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/11681 -
dc.identifier.url http://www.nature.com/ncomms/2015/150522/ncomms8123/full/ncomms8123.html -
dc.identifier.wosid 000355533000011 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Antimony-doped graphene nanoplatelets -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus OXYGEN REDUCTION REACTION -
dc.subject.keywordPlus RAY PHOTOELECTRON-SPECTROSCOPY -
dc.subject.keywordPlus HIGH ELECTROCATALYTIC ACTIVITY -
dc.subject.keywordPlus METAL-FREE ELECTROCATALYSTS -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus GRAPHITE -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus PLATINUM -
dc.subject.keywordPlus CATALYST -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.