BROWSE

Related Researcher

Author's Photo

Jung, Chang-Yeol
Analysis and computational methods Lab
Research Interests
  • Analysis, singular perturbations, uncertainty, numerical methods

ITEM VIEW & DOWNLOAD

Singular perturbation analysis of time dependent convection-diffusion equations in a circle

DC Field Value Language
dc.contributor.author Hong, Youngjoon ko
dc.contributor.author Jung, Chang-Yeol ko
dc.contributor.author Temam, Roger ko
dc.date.available 2015-05-18T06:52:43Z -
dc.date.created 2015-05-15 ko
dc.date.issued 2015-06 ko
dc.identifier.citation NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.119, pp.127 - 148 ko
dc.identifier.issn 0362-546X ko
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/11502 -
dc.description.abstract We study singularly perturbed time dependent convection-diffusion equations in a circular domain. Considering suitable compatibility conditions, we present convergence results and provide as well approximation schemes and error estimates. To resolve the oscillations of classical numerical solutions due to the stiffness of our problem, we construct, via a specific boundary layer analysis, the so-called boundary layer elements which absorb the boundary layer singularities. Using a P1 classical finite element space enriched with the boundary layer elements, we obtain an accurate numerical solution using a quasi-uniform mesh, that is without refinement of the mesh in the boundary layer. ⓒ 2014 Elsevier Ltd. All rights reserved ko
dc.description.statementofresponsibility close -
dc.language 영어 ko
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD ko
dc.title Singular perturbation analysis of time dependent convection-diffusion equations in a circle ko
dc.type ARTICLE ko
dc.identifier.scopusid 2-s2.0-84927513013 ko
dc.identifier.wosid 000352964100010 ko
dc.type.rims ART ko
dc.description.wostc 0 *
dc.description.scopustc 0 *
dc.date.tcdate 2015-12-28 *
dc.date.scptcdate 2015-11-04 *
dc.identifier.doi 10.1016/j.na.2014.08.016 ko
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S0362546X14002715# ko
Appears in Collections:
MTH_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show simple item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU