File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박재영

Park, Jaeyeong
Fuel Cycle and Waste Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Comparison between Numerical Simulations and Experimental Results on Copper Deposition in Rotating Cylinder Hull Cell

Author(s)
Park, JaeyeongChoi, SungyeolHoover, RobertKim, Kwang-RagSohn, SungjuneShin, Yong-HoonPhongikaroon, SupathornSimpson, MichaelHwang, Il Soon
Issued Date
2015-05
DOI
10.1016/j.electacta.2015.02.160
URI
https://scholarworks.unist.ac.kr/handle/201301/11045
Fulltext
http://www.sciencedirect.com/science/article/pii/S0013468615004685
Citation
ELECTROCHIMICA ACTA, v.164, pp.218 - 226
Abstract
2D and 3D numerical models for electrorefining used in pyroprocessing have been developed by Seoul National University with the Korea Atomic Energy Research Institute and University of Idaho with the Idaho National Laboratory, respectively. To validate these models, numerical simulations are conducted on a rotating cylindrical Hull cell for copper deposition in a sulfuric acid solution. The primary current density distribution along the cathode is compared to an empirical equation of Madore. The 2D and 3D modeling results of the tertiary current density distribution along the cathode were compared. The numerical modeling results of the 2D and 3D models match each other well. In addition, the modeling results of the 3D model on the tertiary current density distributions according to the applied current densities are compared to the experimentally measured distributions. There are some discrepancies between the modeling results and experimental data. The discrepancies could be mainly explained by the hydrodynamic effect of Luggin probes used for measuring the overpotential distribution. At low Reynolds number, Luggin probes could act as a static mixer improving mass transfer near working electrode. In contrast, at high Reynolds number, Luggin probes could act as a flow obstacle dissipating flow kinetic energy. © 2015 Elsevier Ltd
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
0013-4686
Keyword (Author)
rotating cylindrical Hull cellelectrorefiningoverpotential distributioncurrent density distributioncopper electrodeposition
Keyword
REYNOLDS-NUMBERSALTELECTROREFINERANODEDISTRIBUTIONSCONVECTIONURANIUMCATHODERANGECODE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.