File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

최남순

Choi, Nam-Soon
Energy Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2212 -
dc.citation.number 2 -
dc.citation.startPage 2203 -
dc.citation.title ACS NANO -
dc.citation.volume 9 -
dc.contributor.author Choi, Sinho -
dc.contributor.author Kim, Jieun -
dc.contributor.author Choi, Nam-Soon -
dc.contributor.author Kim, Min Gyu -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-22T01:39:56Z -
dc.date.available 2023-12-22T01:39:56Z -
dc.date.created 2015-03-24 -
dc.date.issued 2015-02 -
dc.description.abstract Nanostructured germanium is a promising material for high-performance energy storage devices. However, synthesizing it in a cost-effective and simple manner on a large scale remains a significant challenge. Herein, we report a redox-transmetalation reaction-based route for the large-scale synthesis of mesoporous germanium particles from germanium oxide at temperatures of 420-600 °C. We could confirm that a unique redox-transmetalation reaction occurs between Zn0 and Ge4+ at approximately 420 °C using temperature-dependent in situ X-ray absorption fine structure analysis. This reaction has several advantages, which include (i) the successful synthesis of germanium particles at a low temperature (∼450 °C), (ii) the accommodation of large volume changes, owing to the mesoporous structure of the germanium particles, and (iii) the ability to synthesize the particles in a cost-effective and scalable manner, as inexpensive metal oxides are used as the starting materials. The optimized mesoporous germanium anode exhibits a reversible capacity of ∼1400 mA h g-1 after 300 cycles at a rate of 0.5 C (corresponding to the capacity retention of 99.5%), as well as stable cycling in a full cell containing a LiCoO2cathode with a high energy density (charge capacity = 286.62 mA h cm-3) -
dc.identifier.bibliographicCitation ACS NANO, v.9, no.2, pp.2203 - 2212 -
dc.identifier.doi 10.1021/acsnano.5b00389 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-84923444580 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/10987 -
dc.identifier.url http://pubs.acs.org/doi/abs/10.1021/acsnano.5b00389 -
dc.identifier.wosid 000349940500117 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor energy storage devices -
dc.subject.keywordAuthor germanium anode -
dc.subject.keywordAuthor mesoporous germanium -
dc.subject.keywordAuthor redox-transmetalation -
dc.subject.keywordAuthor zincothermic reduction -
dc.subject.keywordPlus GE-AT-C -
dc.subject.keywordPlus ION-BATTERY ANODES -
dc.subject.keywordPlus LITHIUM-ION -
dc.subject.keywordPlus HIGH-CAPACITY -
dc.subject.keywordPlus NANOWIRE ANODES -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus SI -
dc.subject.keywordPlus NANOSTRUCTURES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.