File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles

Author(s)
Park, KunsuSon, Jae SungWoo, Sung IllShin, KwangsooOh, Min-WookPark, Su-DongHyeon, Taeghwan
Issued Date
2014-03
DOI
10.1039/c3ta14699e
URI
https://scholarworks.unist.ac.kr/handle/201301/10167
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.2, no.12, pp.4217 - 4224
Abstract
We describe n-type nanostructured bulk thermoelectric La-doped SrTiO3 materials produced by spark plasma sintering of chemically synthesized colloidal nanocrystals. The La doping levels could be readily controlled from 3 to 9.0 at% by varying the experimental conditions. We found that nanoscale interfaces were preserved even after the sintering process, and the thermoelectric properties of the nanostructured bulk La-doped SrTiO3 were characterized. An enhanced thermoelectric efficiency was observed and attributed to the large decrease in thermal conductivity obtained with no significant change in the Seebeck coefficient or electrical conductivity. The nanostructured bulk of the La-doped SrTiO3 exhibited a maximum ZT of similar to 0.37 at 973 K at 9.0 at% La doping, which is one of the highest values reported for doped SrTiO3. Furthermore, the materials showed high thermal stability, which is important for practical high-temperature thermoelectric applications. This report demonstrates the high potential for low-cost thermoelectric energy production using highly stable and inexpensive oxide materials.
Publisher
ROYAL SOC CHEMISTRYROYAL SOC CHEMISTRY
ISSN
2050-7488

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.