BROWSE

ITEM VIEW & DOWNLOAD

Chemically Engineered 3D Graphene Nanostructures

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Chemically Engineered 3D Graphene Nanostructures
Author
Shin, Young-Eun
Advisor
Ko, Hyunhyub
Issue Date
2013-08
Publisher
Graduate School of UNIST
Abstract
Recently, 3D graphene nanostructures have attracted considerable attentions for a variety of applications in sensors, separations, lithium-ion batteries, and supercapacitors because of their prominent properties such as high surface area, high electrical conductivity, and thermal/mechanical stability. Herein, we demonstrate various types of 3D graphene nanostructures via chemical modification of graphene oxide and their self-assembly behaviors in different solvent conditions. In particular, porous graphene nanostructures are fabricated through the control of electrostatic repulsions between chemically modified graphene sheets. Chemically reduced graphene oxide sheets are well-dispersed owing to the electrostatic repulsion at high pH condition, while agglomerating each other at low pH condition. Noticeably, we fabricate different graphene morphologies such as dendrite-like structure and wire-like structure by controlling the pH condition. In addition, different morphology of graphene nanostructures such as crumpled and scrolled geometries is demonstrated via control of pH condition and graphene reduction time. These various type of graphene nanostructures could be used for variety of applications as mentioned above.
Description
Chemical Engineering
URI
Go to Link
Appears in Collections:
ECHE_Theses_Master
Files in This Item:
Chemically Engineered 3D Graphene Nanostructures.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU