File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정윤석

Jung, Yoon Seok
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode

Author(s)
Mun, JunyoungJung, Yoon SeokYim, TaeeunLee, Hyun YeongKim, Hyo-JinKim, Young GyuOh, Seung M.
Issued Date
2009-12
DOI
10.1016/j.jpowsour.2009.05.048
URI
https://scholarworks.unist.ac.kr/handle/201301/10023
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=69449086259
Citation
JOURNAL OF POWER SOURCES, v.194, no.2, pp.1068 - 1074
Abstract
Four different electrolytes are prepared by dissolving a Li salt in three different room-temperature ionic liquids (RTILs) and also in a conventional organic solvent. The cathodic (electrochemical reduction) stability of these electrolytes is compared at both ambient and elevated temperature by potential cycling on a TiO2-B electrode. At room temperature, the stability of pyrrolidinium- and piperidinium-based RTILs is comparable with that of the carbonate-based organic solvent, which is in contrast to the severely decomposed imidazolium-based RTIL. At elevated temperature (120 °C), the imidazolium-based RTIL undergoes even more significant cathodic decomposition that results in the deposition of a resistive surface film and leads to eventual cell degradation. By contrast, the cathodic decomposition and concomitant film deposition are not serious with pyrrolidinium- and piperidinium-based RTILs even at this high-temperature, so that the TiO2-B/Li cell operates with reasonably good cycle performance. The latter two RTILs appear to be promising solvents for lithium-ion batteries that are durable against occasional exposure to high-temperature.
Publisher
ELSEVIER SCIENCE BV
ISSN
0378-7753

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.