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Design of high‑performance 
entangling logic in silicon quantum 
dot systems with Bayesian 
optimization
Ji‑Hoon Kang 1,5, Taehyun Yoon 2,5, Chanhui Lee 3, Sungbin Lim 4* & Hoon Ryu 1*

Device engineering based on computer-aided simulations is essential to make silicon (Si) quantum 
bits (qubits) be competitive to commercial platforms based on superconductors and trapped ions. 
Combining device simulations with the Bayesian optimization (BO), here we propose a systematic 
design approach that is quite useful to procure fast and precise entangling operations of qubits 
encoded to electron spins in electrode-driven Si quantum dot (QD) systems. For a target problem of 
the controlled-X (CNOT) logic operation, we employ BO with the Gaussian process regression to evolve 
design factors of a Si double QD system to the ones that are optimal in terms of speed and fidelity of 
a CNOT logic driven by a single microwave pulse. The design framework not only clearly contributes 
to cost-efficient securing of solutions that enhance performance of the target quantum operation, 
but can be extended to implement more complicated logics with Si QD structures in experimentally 
unprecedented ways.

Modern information and communication technology (ICT) owes a great deal to silicon (Si) material on which 
electronic devices are integrated, enabling the enormous increase in computing power and storage capacity. 
The territory of Si material is being extended to emerging quantum information technology due to the matured 
industrial-standard fabrication process; for example, the quantum logic devices have been integrated into a 
single Si wafer1–5. Electrically defined Si quantum dot (QD) system has already proved its manufacturability 
and feasibility as a versatile platform for implementation of quantum logic gates1,6–15. Since Loss & DiVincenzo 
proposed the state-of-art concept for implementation of universal gates using QD-confined spins16, research-
ers have reported stable addressing of individual quantum bit (qubit)10,14,15, implementation of a SWAP & a 
controlled-Z (CZ) gate11,14,15, and a fast CNOT logic driven with a single microwave pulse12. In spite of remarkable 
progresses achieved by preceding works, the Si-based qubit technology is still generally behind the ones based 
on superconductors17,18 or trapped ions19,20. Elaborated efforts are still required to resolve design issues such as 
fidelity-degradation driven by material-inherent noises21–25, instability of spin states stemming from the Rashba 
effect in nanoscale layers26,27, and scalable implementation of entangling logics14,15.

Computer-aided simulations are essential to resolve the above-mentioned design problems since they can 
not only handle enormous design variations that are practically impossible to be uncovered with experiments, 
but also improve existing designs in experimentally unprecedented ways25,28–32. However, finding design solu-
tions often involves huge amount of trial-and-errors and a massive set of simulations needs to be conducted 
with parameter sweeps until results satisfy design criteria. In our previous studies25,28, for example, a charge 
stability diagram is simulated with 2,500 sets of electrical biases to find the condition for qubit initialization 
in a Si double QD (DQD) system, spending several thousand core-hours. Moreover, even though solutions are 
obtained, their quality may deteriorate if search cases are limited due to the design complexity. Naive random 
search hardly considers complicated nonlinear relations among design parameters in physical systems; hence, it 
becomes difficult to get optimal designs without an appropriate case-sampling approach.

So in this work, we devise a design strategy based on the Bayesian optimization (BO)33, a principled methodol-
ogy which efficiently optimizes a black-box function by making decisions between exploration and exploitation 
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in a data-driven way when the function is costly. To bypass time-consuming case-by-case device simulations, 
BO estimates the possibility of finding design solutions in an exploratory domain with the surrogate function 
that is augmented with a restricted number of simulated data. To find the optimal solution more efficiently, 
BO samples data points with the acquisition function that considers the trade-off between exploration and 
exploitation, differently from the brute-force approach where sampling points are searched manually34. As a 
target problem of the proposed design approach, we use the experimentally reported Si DQD structure12 where 
a CNOT operation is implemented with a single-step control of time-varying magnetic pulses. Employing our 
in-house device simulator28 as a black-box function of BO, we focus on finding spin resonance frequencies and 
inter-spin exchange interaction that minimize the operating time while maintaining the fidelity larger than the 
given criterion. With device simulations, we find the physical design in Si DQD structures that reproduces the 
BO-driven results, verifying the practicality of our approach that in principle contributes to saving the working 
load required to find design solutions compared to the case when only device simulations are employed.

Methods
Computational flow of the proposed design approach
Figure 1 illustrates the entire design process that is devised to study a single-step CNOT operation with BO. 
The process starts with the device simulation block where potential energy profile and electron spin states of the 
Si DQD structure are self-consistently determined with our in-house device simulation tool based on a hybrid 
utilization of the bulk physics and electronic structure calculations. Once energetic positions and charge distribu-
tions of the electron spin states are determined, we calculate Zeeman-splitting energies of both QDs ( EZR , EZL ) 
and exchange interaction (J) that are the final outputs of the first block. With EZR , EZL and J, the next block (logic 
operation simulation) constructs the Heisenberg Hamiltonian to simulate the 2-qubit time responses and the 
outputs of this block become the operation time ( tCNOT ) and corresponding fidelity (F) of a single-step CNOT 
operation. We note that in-depth description on computational details for the above-mentioned two blocks is 
available in our latest works25,28.

Taking the logic operation simulation block as a black-box objective function, BO is conducted to minimize 
tCNOT under user-defined fidelity criteria against the target design variables ( EZR , EZL and J) given as inputs of the 
objective function. For initial observation data that is required to begin the BO process, we find the realistic con-
ditions of inputs ( EZR , EZL and J) and outputs ( tCNOT and F) that faithfully reproduce the experimental results12,28. 
Once we get the solutions, i.e., EZR , EZL and J that minimize tCNOT whilst maintaining F larger than given values, 

Figure 1.   Overall process of the design framework. Quantum logic operations of the silicon (Si) double 
quantum dot (DQD) platform are modeled with device simulation (left upper) and logic operation simulation 
(left lower). From device simulations of DQD structures, we obtain Zeeman-splitting energy ( EZL and EZR ) and 
exchange interaction energy (J) that are used to constructs the Heisenberg Hamiltonian of electron spins. Time 
responses of spin qubits can be obtained by solving time-dependent Schrödinger equation described with the 
Heisenberg Hamiltonian. The set of ( EZL , EZR , J), which can implement the fastest CNOT operation under user-
defined criteria of operational fidelity, is determined by the Bayesian optimization (BO) technique that takes 
the logic operation simulation block as a black-box objective function. To verify the feasibility of BO-driven 
solutions, we find physical designs of DQD structures (right upper), and examine how results obtained by device 
simulations and BO are correlated (right lower).
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we find physical designs of a Si DQD system to verify the feasibility of optimal design factors searched by BO, 
because BO itself does not know whether they indeed can be implemented in a real Si DQD system.

Bayesian optimization
BO is an iterative algorithm that optimizes a black-box objective function whose computation is costly. To 
mitigate the cost problem of computation, BO handles two tasks to negotiate the accuracy of prediction with 
the number of function calls. During iterations, BO adopts (a) a surrogate function to approximate the objective 
function with a lower computational cost than the actual objective function, and (b) an acquisition function 
to quantify the uncertainty of each prediction for efficient optimization, thereby calling the objective function 
only for the most probable candidate point. In the optimization loop, BO evaluates the surrogate function at 
randomly selected candidate points and chooses the best candidate as a sampling point using the acquisition 
function, where the exact value at the sampling point is then calculated with the objective function. The optimi-
zation loop iterates until the solution satisfies the design criteria. For the surrogate function, we adopt Gaussian 
Process (GP) regression35:

where m and k represent GP mean and covariance function, respectively, while x and x′ denote a data point. 
Without loss of generality, we can assume m(x) = 0 for GPs.

The major advantage of employing GP as the surrogate function is that there exist analytic formulae for 
mean and covariance of the posterior distribution, which refer to the probability distribution of unobserved 
variables based on a collection of observed data. For function values yT = [y1, . . . , yT ]

T at observed points 
AT = {x1, . . . , xT } , where yt = f (xt) , the posterior over f is also Gaussian. The posterior mean µT (x) , covariance 
�T (x, x

′) and variance σ 2
T (x) can be obtained as follows35:

where kT (x) = [k(x1, x), . . . , k(xT , x)]
T and KT = [k(xi , xj)]xi ,xj∈AT is the positive definite kernel matrix.

Given variance and expectation of the posterior distribution, the acquisition function suggests an optimiza-
tion strategy to choose the next sampling point, considering the trade-off between exploration and exploitation. 
There are several candidates for the acquisition function, such as probability of improvement (PI)36, expected 
improvement (EI)33 or Gaussian process upper confidence bound (GP-UCB)37. Since Srinivas et al. reported 
that GP-UCB reduces the average number of function calls to find global optimum of black-box functions by 
quantifying the uncertainty of the parameter search procedure37, here we adopt GP-UCB as the acquisition 
function that is formulated as follows:

where µ and � are GP posterior mean and covariance function that are shown in Eqs. (2) and (3), respectively. � 
is a constant for balancing between exploration and exploitation. X denotes the parameter space. The sampling 
point xi+1 is determined for the ( i + 1)th iteration step with Eq. (5). In general, BO employing GP incurs a time 
complexity of O(T3) for updating the GP model, attributed to the covariance matrix inversion, where T denotes 
the number of observations. The computational endeavor of determining the next point for sampling, primarily 
through the optimization of the acquisition function, is typically less burdensome than the model update cost. 
Notably, the time complexity of GP-based methods like GP-UCB significantly undercuts that of the grid search 
strategy - O(kn) , with n denoting the number of parameters and k the number of potential parameter values38. 
Designed to curtail the cost of function evaluations required to closely approximate the global optimum, BO 
showcases superior efficiency over grid search, particularly in scenarios where objective function assessments 
are exhaustively demanding37.

(1)g(x) ∼ G P := N(m(x), k(x, x′)),

(2)µT (x) = kT (x)
T (KT )

−1yT ,

(3)�T (x, x
′) = k(x, x′)− kT (x)

T (KT )
−1kT (x

′),

(4)σ 2
T (x) = �T (x, x),

(5)xi+1 = argmax
x∈X

UCB(x; �) = argmax
x∈X

µi(x)+ ��i(x),
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Algorithm 1.   Process of Bayesian optimization.

The whole BO process is schematically shown in Fig. 2. Here, the target objective function is a mapping 
f : x ∈ R

3 → y ∈ R , where x is a set of values of the design factors and y = f (x) indicates the fastest tCNOT 
that can be secured with the fidelity threshold. Initially, we select x ∼ N(0, 1) from the parameter space X and 
sample the corresponding objective function value y. The GP posterior distribution is then calculated with Eqs. 
(2) and (3) including the newly sampled data point. From the obtained posterior distribution, the acquisition 
function based on GP-UCB is evaluated over the random samples of the entire search domain and the next sam-
pling point is determined where the acquisition function is maximized as indicated in Eq. (5). The BO process 
discussed so far is summarized in Algorithm 1. In numerical experiments, we define x = [EZL,EZR, J]

T ∈ X 
where X = [15, 24] × [15, 24] × [0.3, 100] , i.e., the range of EZL,EZR , J are set to [15, 24]GHz, [15, 24]GHz and 

Figure 2.   Schematic flow chart of the Bayesian optimization (BO) process. The input variables are design 
factors of CNOT logic ( x ), i.e., Zeeman-splitting energies ( EZL , EZR ) and exchange interaction (J), where the 
target output to be optimized (y) is the CNOT operation time ( tCNOT ). In each iteration of BO, the surrogate 
function is fitted to the observations of x and y that are accumulated so far, and the minimal y is predicted by 
evaluating the updated surrogate function at randomly chosen design factor candidates ( x(i) ). The acquisition 
function based on the upper confidence bound (UCB) is then employed to decide the design factor candidate 
( xt+1 ) that will be used as an input of the objective function. Corresponding output ( yt+1 ), with xt+1 , is added 
as a new observation. As iteration process continues, uncertainty within the search space is reduced due to the 
increased number of observations, so the updated y and x can become more desirable.
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[0.3, 100]MHz, respectively. In the line 6 and 10 of Algorithm 1, we set the maximum number of iteration steps 
(T) and � for the acquisition function to 50 and 10, respectively.

Results and discussion
A prerequisite for BO is to secure initial observation data which here consist of design parameters ( EZL,EZR , J ) 
that reproduce the experimentally reported single-step CNOT operation12. The first step for finding them is to 
figure out the bias points which initialize qubit states for subsequent gate operations in the target DQD structure 
where qubits are encoded to the electron spin in the ground state of each QD, i.e,  |0� for the down-spin ( | ↓� ) 
and |1� for the up-spin ( | ↑� ) state. For this purpose, a full charge stability diagram is simulated to explore the 
ranges of biases where the down-spin state of each QD is filled with one electron, and Fig. 3a shows the results 
with an illustration of the target Si DQD structure (the middle gate bias ( VM ) and barrier gate bias ( VB ) are set 
to 400 mV and 200 mV, respectively). Being plotted as a function of the left ( VL ) and right ( VR ) gate biases, the 
charge state here is identified with two numbers that indicate the electron population in the left and right QD. 
To help readers understand how the DQD system works, a control path to initialize the DQD structure to the 
(1,1) state from the empty state is marked up with black arrows from point I to point IV in Fig. 3a. Increasing 
VR from point I lowers the energy level of the ground state in the right QD, and eventually fills the right QD 
with an electron at point II where the down-spin ground state in the right QD touches the Fermi energy. By 
increasing both VL and VR from point II to point III, we can also fill the down-spin ground state of the left QD. 
At the point IV, the system is biased symmetrically, which is known to be good for noise-robustness of upcoming 
qubit operations22. The above-mentioned process of charge transfer is conceptually illustrated in Fig. 3b, where 
the energy level of QDs from point I to IV are drawn in connection with the Fermi energy ( EF ) of the source & 
drain two-dimensional electron gases. Once the DQD system is initialized to a | ↓↓� state with VL = 540 mV and 
VR = 570 mV (point IV), the single-step CNOT operation is simulated at VM = 408 mV where J is large enough 
to drive entangling operations25. ( EZL , EZR , J) obtained with device simulations at this point reads (18.287GHz, 
18.501GHz, 19.3MHz). Figure 3c shows the simulated two-qubit responses, where the fastest CNOT operation 
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Figure 3.   System initialization and CNOT operation. (a) Target double quantum dot (DQD) structure and 
charge stability diagram showing electron population in each QD. QDs are formed in the middle silicon (Si) 
layer with the vertical confinement created by band offset between Si & silicon-germanium (SiGe) layer and 
the lateral confinement created by controlling biases on top electrodes (two barrier gate biases ( VB ) and a left/
middle/right gate bias ( VL/VM/VR)). A lateral distribution of the static magnetic field ( BZ ) that is generated 
from the external magnet40, is shown in the inset figure. A charge stability diagram is simulated with the model 
structure as a function of VL and VR with VM = 400 mV and VB = 200 mV. The path from point I to point IV 
indicates the initialization sequence of the DQD system. The simulated charge control is in excellent agreement 
with the experimentally reported result12,25. (b) A conceptual illustration that shows the initialization sequence. 
By controlling VL and VR biases from the empty QDs (point I), the right QD (point II) and left QD (point III) 
are sequentially occupied with a single electron. The initialization is completed at point IV where both QDs are 
filled. (c) Two-qubit time responses obtained with four input states at VL =540 mV, VR = 570 mV and VM = 408 
mV. The first CNOT operation is implemented at t = 100.4 nsec ( tCNOT ) where the spin in the right QD is used 
as a control qubit.
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is accomplished at tCNOT = 100.4 nsec with F = 98.34 %. The values of tCNOT and F are employed as the initial 
observation data for BO as well as with the values of EZL , EZR and J.

Figure 4a presents two snapshots describing the evolving process of BO, which starts with the initial observa-
tion data of the target design factors. Colors of the three 2D contour plots show the UCB value as a function of 
(EZL,EZR) , (EZL, J) , and (EZR, J) , respectively. The uncertainty of the GP prediction with respect to the exact result 
of the objective function is high in the red area where the next sampling point are decided. The phenomenon 
that UCB values over J fluctuate much more strongly than those over EZL and EZR do, implies that J is the most 
sensitive parameter among the target design factors affecting tCNOT and F, being well connected to the fact that 
the fidelity of a single-step CNOT operation is highly sensitive to J39. Figure 4b shows how tCNOT converges as the 

Figure 4.   Evolving the Bayesian optimization (BO) process to search design factors and corresponding results. 
(a) Snapshots of BO process with 4 observations (left) and 23 observations (right). Scattered points in the 3D 
plot represent sampled points at each iteration step, while some of the sampled points are omitted for visibility 
in the lower subfigure. Each sampled point is differently colored according to the minimal operation time of 
CNOT logic that satisfies the fidelity criteria. Colors of contour plots indicate the Upper Confidence Bound 
(UCB) at the current step, showing how UCB values change depending on correlation between control variables. 
The best point in terms of the minimal operation time within the observations and the next sampling point are 
marked with yellow-star and red-cross symbols, respectively. (b) Convergence pattern of the minimal operation 
time ( tCNOT ). Error bars show the standard deviation of 10 tCNOT values that are obtained with different random 
seeds. The red dotted line shows the average tCNOT ( ≃ 18.8nsec) that is obtained with 200 iterations, to which 
the solution converges within 50 iterations for all the 10 cases. (c) Zeeman-splitting energies ( EZR , EZL ) and 
exchange interaction (J) that are driven by BO under the fidelity threshold ranging from 90% to 99%. Being 
colored according to the tCNOT value, dot symbols represent design factors that drive the fastest operation within 
the threshold.
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BO process evolves. Here, a total of 10 different random seeds are tested to examine how the random seed affects 
the convergence speed, and the converged value of the average tCNOT after 200 iterations is marked at 18.8 nsec as 
a dotted red line. What we find is that tCNOT converges to the baseline before 50 iterations in all the cases so the 
maximum iteration number (T in Algorithm 1) we set is large enough to conduct experiments. Figure 4c shows 
the design factors obtained with BO with different thresholds in fidelity ranging from 90% to 99% with a step 
of 1%, where the resulting tCNOT ’s are indicated with colored dot symbols (see the Supplementary Information 
document for results obtained with a threshold of 99.9% and 99.99%). Here, the optimal design factors turn out 
to be almost evenly distributed across the search space of EZL and EZR , while they are concentrated in the range of 
[85, 100]MHz in the case of J. Results here indicate that the gating speed of a single-step CNOT operation is cor-
related to J more strongly than to EZL and EZR . It is worth noting that the correlation between threshold in fidelity 
and tCNOT is not clear, so relaxation of the threshold would not necessarily lead to the faster CNOT operation.

So far we have checked that BO delivers optimal values of EZL , EZR and J satisfying the criteria of F. However, 
BO does not provide any clues on whether the optimal solutions are realizable with physical devices, so another 
essential task of this work should be to verify the practicality of our design framework by securing physical 
designs of Si DQD devices that produce the optimal solutions obtained with BO. The first step for device designs 
here would be to decide the distribution of a static magnetic field ( BZ ), which are externally applied to the DQD 
system in reality25. Assuming that BZ changes linearly along the lateral ([100], X) direction (see Fig. 3a), we try to 
determine the distance between two QDs such that EZL and EZR obtained with BO can be reproduced reasonably. 
For this purpose, we convert EZL & EZR to the magnitude of BZ using the Bohr magneton constant for electron 
spin momentum ( ∼5.78×10−5 eV/T), and plot the difference of two BZ ’s ( �BZ ) in Fig. 5a, where circles are num-
bered from 1 to 10 in accordance with fidelity criteria in an ascending order, i.e., ‘1’, ‘2’, ..., and ‘10’ correspond 
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Figure 5.   Physical design of double quantum dot (DQD) structures that reproduce solutions driven by the 
Bayesian optimization (BO) process. (a) Difference of magnitudes in magnetic field ( �BZ ) at the left and right 
QD spot. The two magnitudes are obtained by converting Zeeman-splitting energies ( EZR and EZL ). �BZ ’s are 
plotted with circles that are numbered based on the fidelity criteria such that ‘1’, ‘2’, ..., ‘10’ indicate the case 
of 90%, 91%, ..., 99%, respectively. Design cases are categorized into three groups, where BZ profiles in each 
group have the same gradient along the lateral (X) direction. (b) BZ profiles along the X ([100]) direction and 
corresponding sizes of the middle gate ( LM ) in 10 design cases. Gate electrodes are also schematically illustrated 
to show that we only changed LM to drive BZ profiles that reproduce BO-driven EZR and EZL , using the structure 
shown in Fig. 3a as a baseline. (c) DC biases of left ( VL ), middle ( VM ), and right gate ( VR ) that symmetrically 
initialize the DQD system to a | ↓↓� state and reproduce BO-driven exchange energies (J).
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to the design case of F ≥ 90%, 91%, ..., and 99%, respectively. Since �BZ ranges from about 35mT to 250mT, the 
lateral distance between two QDs in design cases can vary up to 7 times with a single gradient ( ∂BZ/∂X ), and it 
may be hard to secure J strong enough to implement fast CNOT operations if QDs are too far. Accordingly, we 
categorize the design cases into 3 groups based on the magnitude of �BZ , employing different gradients (0.48 
mT/nm, 1.15 mT/nm, and 2.10 mT/nm for group 1, 2, and 3, respectively). For structural designs of the DQD 
system, we only vary the size of the middle gate ( LM ) from the original DQD structure shown in Fig. 3a, set-
ting LM to 60 nm in the baseline case of each group that has the smallest �BZ . Figure 5b shows the results with 
lateral distributions of BZ and the length of middle gates to scale in all the design cases. Corresponding sets of 
( VL , VR , VM ), which initialize the system with symmetric biasing, are presented in Fig. 5c ( VB is set to 200 mV 
for all the cases).

To examine if the BO-driven results ( EZL , EZR , J, tCNOT , F) can be secured in physical systems, we conduct 
device simulations against Si DQD structures (Fig. 5b) with bias points (Fig. 5c), and show the correlation 
between simulated and BO-driven results in Fig. 6a and b. The correlation coefficient (R) turns out to be quite 
strong ( ≃ 99.98% and ≃ 99.94%) in the case of EZL and EZR . R of J ( ≃ 90.85%) is also nice, but is a bit weaker than 
in the case of EZL and EZR . The reason why J has weaker correlation can be explained with the huge sensitivity 
that J has against VM . Since J fluctuates by a factor of up to several hundreds with even a few mV of �VM as we 
reported25, very tiny mismatches in LM and VM can drive significant deviations of J, and it is therefore generally 
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Figure 6.   Correlation between simulated and BO-driven results. Simulated results obtained with secured 
physical designs are compared with solutions obtained with BO; Zeeman-splitting energy ( EZL , EZR ) in (a), 
exchange energy (J) in (b), CNOT operation time ( tCNOT ) in (c), and gate fidelity (F) in (d). An outstanding 
linear correlation is observed between simulated results and BO solutions in cases of EZL , EZR and tCNOT , while a 
slightly weaker correlation is found in cases of J and F.
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challenging to make the correlation of J as strong as that of EZL and EZR . Figure 6c and d show speed and fidelity 
of CNOT operations, respectively. Results here generally turn out to be solid enough to claim the strong correla-
tion in the case of tCNOT (R ≃ 99.23%) and F (R ≃ 85.71%). Again, the origin of the relatively worse correlation 
that F shows, can be found from the fact that the fidelity of a single-step CNOT operation implemented in the Si 
DQD platform strongly depends on J (and so VM)25,39. Despite some fluctuations in correlation between simulated 
and BO-driven results, derived R’s can generally support the practicality of our design framework, which is still 
valid for results secured with a threshold of 99.9% and 99.99% (see the Supplementary Information document).

Conclusion
An engineering framework based on the Bayesian optimization (BO) is proposed for implementation of quan-
tum logic operations in electrode-driven quantum dot (QD) systems in silicon (Si). With our in-house device 
simulation code that solves electrostatics of Si QD structures and corresponding time responses of quantum 
bits (qubits) encoded to electron spins, we get the initial design of a Si double QD (DQD) structure that gives 
Zeeman-splitting energies ( EZ ) and exchange energy (J) with which the experimentally reported controlled-X 
(CNOT) operation12 is well mimicked. BO is then conducted to find unknown sets of ( EZ , J) that maximize the 
speed of CNOT operations whilst maintaining the operational fidelity larger than user-defined criteria ranging 
from 90% to 99%. The optimal solutions procured by the BO process turn out to improve the performance of 
2-qubit CNOT logic implemented in the Si DQD system such that all the searched solutions complete the opera-
tion within around 20 nsec with the fidelity ≥ 90%, which is almost 5 times faster than the initial design that 
mimics the experimental result. The BO-driven solutions are validated by finding physical designs of Si DQD 
structure, for which we elaborately adjusted sizes & biases of gate electrodes together with distribution of static 
magnetic field such that ( EZ , J) obtained with BO can be faithfully reproduced with device simulations. For all the 
design cases we considered, the correlation between BO-driven solutions and results of device simulations turns 
out to be quite strong. Devising a systematic design framework that combines BO with our in-house multi-scale 
modeling approach of semiconductor devices25,28, this work contributes to opening a practical way for optimal 
designs of complicated multi-qubit operations with electrically defined semiconductor QD platforms.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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