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ABSTRACT
The bacterial community structure of polluted soil differentiates according to toxic pollutants. In this study, the acid pollution source was predicted 
by using characteristic bacterial community structures which were exposed to HCl, HF, HNO3, and H2SO4. In a soil column, after a simulated 
acid leak, Bacillus, Citrobacter, Rhodococcus, and Ralstonia sp. were found as acid-resistant bacteria and their relative abundance varied depending 
on the acid. The complex bacterial community was analyzed by using terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA 
gene. Using machine learning models including support vector machine (SVM), K-nearest neighbors (KNN), random forest (RF), and artificial 
neural network (ANN), the prediction accuracy for acidic pollutants was 72%, 72%, 76%, and 88%, respectively. With data augmentation based 
on T-RFLP, the accuracy of the ANN model for predicting acidic pollutants improved to 98%. This research provides valuable insights into 
the potential use of bacterial community structures and machine learning models for the rapid and accurate identification of acid pollution 
sources in soil.
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Graphical Abstract

1. Introduction

Soil is a vital part of our planet, comprising 25% air, 25% water, 
and the remaining 50% being a mix of organic and inorganic 
materials [1]. This soil offers us essential services, from food and 
fuel to building materials, supporting both our health and ecosys-
tems [2]. However, mining and manufacturing industries are rising 
as major causes of soil pollution, which is becoming a big issue 
[2, 3]. Contaminated soils pose risks to both ecology and human 
health, intensifying the need for effective methods to identify and 
track such pollution [4-7]. Moreover, the leakage of chemicals 
can change the soil's pH and other important features, highlighting 
the need for studies on these effects and urgent soil protection 
efforts [8-10].

Bacterial communities within soil are crucial for maintaining 
its health and functionality [11-13]. These changes in the soil 
bacterial community can be seen as sensitive indicators of environ-
mental changes and contamination events [14, 15]. Specifically, 
Proteobacteria play key roles in environmental processes like nitro-
gen fixation [12], while Firmicutes are known to be active even 
in certain acidic conditions [14, 16]. Analyzing the structure of 
these bacterial communities can serve as an essential tool for under-
standing and addressing soil contamination. Terminal restriction 
fragment length polymorphism (T-RFLP) stands out as a cost-effec-
tive technique useful for assessing such bacterial diversity, offering 
a concise depiction of bacterial classifications [17, 18]. Therefore, 

a detailed analysis of bacterial communities plays a significant 
role in evaluating soil's environmental health and contamination 
status.

Soil pollution, particularly acid contamination, arises from vari-
ous sources and negatively affects the environment. In a previous 
report, numerous factors, including industrial accidents, have been 
pinpointed as leading causes of soil pollution in the industrial 
sector [2]. Chemical spills, fires, and explosions can result in major 
disasters for residents and the environment, causing financial loss-
es, raw material shortages, and severe disruptions across various 
industries [19-21]. HCl can easily induce soil and groundwater 
acidification [22, 23] while HNO3 reduces soil's buffering capacity 
[24]. In addition, H2SO4 and HF cause soil expansion and rapidly 
dissolve plant silica, respectively [25]. Such acid leaks lead to 
environmental problems like a decrease in soil pH, resulting in 
shifts in soil bacterial communities, reduced crop yields, and respi-
ratory diseases [4, 9, 26-28]. Considering these multifaceted causes 
and impacts, it is essential to accurately identify acid pollution 
sources.

Soil contamination is becoming increasingly complex, neces-
sitating the use of modern technologies. Machine learning models, 
such as artificial neural networks (ANN), random forest (RF), sup-
port vector machines (SVM), and K-nearest neighbors (KNN), can 
be utilized in predicting acidic pollution sources [29-32]. Inspired 
by the structure of the human brain, ANN are capable of processing 
complex data information arising in genetics, such as the 16SrRNA 
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gene of bacteria, enabling the prediction of relationships with 
acidic contaminants [29, 33, 34]. However, to enhance the accuracy 
of these predictions, a sufficient amount of data is required for 
training machine learning models. The introduction of generative 
adversarial networks (GAN) for data augmentation provides a sol-
ution to this challenge [35, 36]. In comparison to conventional 
machine learning, GAN can greatly refine the accuracy of identi-
fication of soil contaminants. In this study, it was hypothesized 
that machine learning models combined with tools like T-RFLP 
enhance the performance of forensics by generating diverse bio-
logical indicators of terminal restriction fragments (T-RFs) [17, 
37-39]. Harnessing a blend of these advanced techniques and data 
methodologies holds great promise in addressing the challenges 
of soil pollution.

This study aims to develop a forensic tool for acidic pollution 
through T-RFLP analysis and machine learning. After introducing 
tap water, HCl, HF, HNO3, and H2SO4 to healthy soil, we inves-
tigated the temporal changes in bacterial communities using both 
T-RFLP and next-generation sequencing (NGS). The data obtained 
from T-RFLP was augmented using GAN. Then, using trained 
machine learning models, including SVM, KNN, RF, and ANN, 
we classified the samples based on the specific acidic pollutants. 
This novel forensic approach offers precise predictions and in-
sights into the effects of various acidic contaminants on bacterial 
communities.

2. Materials and Methods

2.1. Simulated Acidic Pollutant Leakage

To simulate an acidic contaminant leak, 10 soil columns with 
a diameter of 5 cm and a length of 21 cm were filled with 550 
g of soil (from 35°14'38.4"N 129°03'23.4"E). Subsequently, tap water 
(pH 7.01±0.1, conductivity 98±10 us/cm), 1.0 N HCl (Samcheon 
Chemical Co., Korea), HF (Duksan Pure Chemical Co., Korea), 
HNO3 (Samcheon Chemical Co., Korea), and H2SO4 (Junsei, Japan) 
were added to the five autoclaved soil columns in volumes equal 
to the soil. The same process was also performed on the five 
non-autoclaved soil columns with the same acidic contaminants. 
Leakage was conducted on days 1 and 3. From day 5 to 10, rain 
simulation was performed using an amount of tap water equivalent 
to the soil volume. Starting from day 10, this rain simulation 
was repeated every 5 days using tap water of the same specifications. 
In this manner, a total of 34 days were spent conducting leakage 
and rain simulations.

2.2. Sampling

From the soil column subjected to tap water and four types 
of acidic contaminant leakage, soil samples were collected on 
days 1 and 3 post-leakage, during the rain simulations from days 
5 to 10, and on days 16, 22, and 28. Additional samples were 
also taken on days 19, 25, 31, and 34 when no treatments were 
applied. On days 1, 3, and the final day 34, samples were specifically 
collected from the top, middle, and bottom sections of the soil 
column, totaling 100 soil samples (Table S1).

2.3. pH Analysis

Each 2.5 g soil sample was mixed with 5 mL distilled water, 
agitated at 150 rpm, 25°C for 30 minutes, and its pH was measured 
using a pH probe (AB15+ Model, Thermo-Fisher Scientific, USA).

2.4. DNA Extraction

Soil samples for DNA extraction were collected from the soil col-
umn, amounting to 500 mg, and were stored at 20°C until DNA 
extraction. A total of 100 samples were collected, and sample 
codes are provided in Table S1. Genomic DNA was extracted using 
the SPINeasy DNA Kit for Feces / Soil (MP Biomedical, USA), 
and further purified with the DNeasy Power clean Pro Cleanup 
Kit (Qiagen, USA). The concentration of the extracted DNA was 
analyzed using the QubitTM 4 Fluorometer (Invitrogen, USA).

2.5. Next-Generation Sequencing

For the analysis of soil bacterial communities, Bacterial 16S rRNA 
gene amplicons (V3 and V4 regions) were sequenced on the Illumina 
MiSeq platform (Illumina, San Diego, CA, United States) by 
Macrogen Inc (Seoul, South of Korea). Post-sequencing, samples 
were categorized using index sequences, and paired-end FASTQ 
files were generated. Sequencing adapters and target gene region 
primers were removed with Cutadapt (v3.2). Amplicon sequencing 
was error-corrected using the DADA2 (v1.18.0) package in R 
(v4.0.3). Reads exceeding 2 expected errors were discarded, and 
sequences were truncated to 250 bp for Read1 and 200 bp for 
Read2. After establishing a batch-specific error model, noise was 
removed from samples. Corrected paired-end sequences were 
merged and chimeric sequences were removed using DADA2's 
Consensus method to form ASVs. For microbial community com-
parisons, normalization was performed using QIIME (v1.9) based 
on the sample with the fewest reads. Each ASV was matched 
against the NCBI 16S Microbial DB using BLAST+(v2.9.0) to assign 
taxonomy, but assignments were skipped if query coverage or 
matched region identity was below 85%.

2.6. Terminal Restriction Fragment Length Polymorphism

The 16S rRNA gene was amplified for T-RFLP analysis using primers 
27F and 518R [40, 41], labeled with FAM and HEX fluorophores. 
The PCR mixture of 50 μL included DreamTaq DNA Polymerases 
(Thermo Fisher, USA), primers, DNA template, and deionized 
water. Amplification occurred in a SimpliAmp Thermal Cycler 
(Thermo Fisher, USA) with specific cycling parameters: initial 
3 min at 93°C, followed by 30 cycles of 30 s each at 93°C, 60 
°C, and 72°C, concluding with a 10 min cycle at 72°C. After amplifi-
cation, the amplicon was purified using QIAquick PCR Purification 
and digested with endonuclease BsuRI (Thermo Fisher, USA) at 
37°C for 3 hours. T-RF scanning was performed by SolGent (South 
Korea) with data processed using the Peak Scanner (Thermo Fisher, 
USA). T-RFs were sorted, and their relative abundance was de-
termined using the "readr", "dplyr", and "tidyverse" packages in R.

2.7. Indicator Species Analysis

The T-RF data obtained through T-RFLP analysis was utilized 
for the assessment of indicator species specific to certain acid 
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pollutants. The T-RFs and their relative abundance from each 
soil sample were organized into a data frame format. After standard-
izing this data frame, it was analyzed using the 'Indicspecies' pack-
age in R. Based on the analysis, data on indicator species for 
each acid pollutant and other species were separately extracted.

2.8. Data Augmentation

Data augmentation was carried out using Python. The numpy 
and pandas libraries were employed for data processing, and Keras 
was utilized to establish a generative adversarial network (GAN) 
model. The data frame was organized such that the first column 
represented samples, the second column denoted acidic pollutants, 
and the columns from the third onward contained data. 
Additionally, standardization was performed on this data. For the 
model, the generator was designed with an initial input of 100 
nodes, followed by layers with 256, 512, and 1024 nodes, 
respectively. The final layer contained nodes equivalent to the 
number of features in the original data, employing a 'linear' activa-
tion function. The discriminator was constructed with layers hous-
ing 1024, 512, and 256 nodes sequentially, with its final layer 
utilizing a 'sigmoid' activation function. During model training, 
the Adam optimization algorithm was used. The learning rate, set 
at 0.0002, controlled how swiftly the model learned, ensuring stable 
training. Additionally, a beta1 value of 0.5 was set, determining 
the extent to which past gradient information was reflected. The 
configured model underwent training for a total of 1000 iterations 
(epochs). Using the trained generator, 20 new sample data points 
were generated for each acidic pollutant.

2.9. Machine Learning for Pollutant Prediction

Various machine learning algorithms were experimented with to 
predict acidic pollutants. The raw data was loaded using the pandas 
package and preprocessed with numpy. After removing missing 
and outlier values, the data was standardized and split into training 
and testing sets at an 80:20 ratio. The support vector machine 
(SVM) was trained using sklearn with a linear kernel and C=1. 
For the K-nearest neighbors (KNN), the number of neighbors was 
set to 3. The random forest (RF) was configured with 100 trees, 
and the artificial neural network (ANN) was designed using tensor-
flow with two dense layers (128 and 64 neurons) and a softmax 
output layer. The performance of each model was evaluated using 
accuracy, classification reports, and confusion matrices. For visual-
ization, 2D PCA, neural network diagrams, and confusion matrices 
were used.

3. Results & Discussion

3.1. Changes in Soil pH Due to Acidic Contaminants

To monitor the soil pH over time following the acidic substance 
leak, tap water (W-column), HCl (C-column), HF (F-column), HNO3 
(N-column), and H2SO4 (S-column) were leaked into both the five 
non-sterilized soil-filled columns and the five sterilized soil-filled 
columns on days 1 and 3. Subsequently, using tap water, periodic 
rainfall was simulated for 34 days, and the top layer of soil from 

the columns was periodically collected to measure the pH.
As a result, after the acidic contaminant leak, a rapid decrease 

in pH was observed in both the five sterilized and the five non-steri-
lized soil samples. In both conditions, the soil showed an increasing 
pH trend for about 10 days, after which the pH in the soils with 
the leaked acidic contaminants stabilized at around 4.5±0.5 and 
3.9±0.2, respectively, for the remainder of the period. Notably, 
the non-sterilized soil displayed a gradual rise in pH, while the 
sterilized soil experienced a more abrupt increase (Fig. 1). For 
both soil conditions, a rapid pH decline to below 3 was observed 
in the C, F, N, and S-columns contaminated by acidic pollutants 
on days 0 and 3. Specifically, on day 3, the non-sterilized soil 
in the C-column showed a minimum pH of 0.76, while the sterilized 
soil in the N-column exhibited a pH as low as 0.58. Then, both 
soil conditions displayed a trend of soil pH recovery by day 10. 
After 10 days, the non-sterilized soil showed average pH values 
of 4.37, 5.29, 4.56, and 4.34 in the C, F, N, and S-columns, re-
spectively, until the end of the experiment. For the sterilized soil, 
the C, F, N, and S-columns recorded average pH values of 3.75, 
4.23, 3.83, and 3.79, respectively. Both soil conditions exhibited 
distinct trends in pH recovery after exposure to acidic 
contaminants. Upon leakage of acidic pollutants, both soil types 
showed a pH drop to values below 3. These findings suggest that 
regardless of the presence or absence of soil bacteria, exposure 
to these contaminants can produce detrimental effects on the soil. 
The introduction of acidic pollutants leads to a reaction with the 
soil's moisture, producing anions and hydrogen ions. This surge 
in hydrogen ions results in a pH drop and serves as a primary 
toxicant to bacteria, culminating in a decrease in microbial diversity 
and negatively impacting the soil [5, 9, 10].

However, during the simulated rainfall period, the trend of 
pH increase in the soil differed between the two conditions. This 
suggests that the pH of soil contaminated by acidic pollutants 
might vary according to the soil's buffering capacity. In the context 
of soil, the presence of soil bacteria contributes to nutrient cycling 
and plays a role in buffering [42]. From days 3 to 10, as the soil's 
pH started to recover, the large amount of hydrogen ions supplied 
by the acidic pollutants bound with the organic matter in the 
soil, forming organic compounds. These compounds, when utilized 
by acidophilic bacteria, facilitate the cycling of hydrogen ions, 
leading to a gradual increase in pH [43, 44]. On the other hand, 
in sterilized soil where the activity of soil bacteria was eliminated, 
the pH sharply increased, presumably due to the easier adsorption 
by rainfall or the leaching away of hydrogen ions [45]. This demon-
strates that the presence of bacteria contributing to the soil's buffer-
ing characteristics can be used as an indicator to assess the condition 
of the soil.

3.2. Bacterial Community Structure

3.2.1. Next generation sequencing
To compare the bacterial community structure in the soil at the 
beginning and end of the acid leak, soil samples were collected 
from the top layer of the five non-sterilized soils where tap water, 
HCl, HF, HNO3, and H2SO4 had leaked. Ten samples were collected 
for 16S rRNA gene amplicon sequencing.

From this analysis, 327,200 high-quality bacterial sequences 
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were obtained, which were further categorized into 6,448 ASVs. 
Fifteen bacterial species, showing a relative abundance of over 
5% at least once in the samples, were identified as the main species 
(Fig. 2). The top three species in each sample were analyzed and 
are presented in Table 1. In the initial stages of acidic leakage, 

species such as Ralstonia syzygii, Citrobacter tructae, Citrobacter 
werkmanii, Citrobacter cronae, Bacillus clarus, and Rhodococcus 
qingshengii exhibited high dominance. The average relative abun-
dance of these species in the initial acidic leakage samples was 
8.6 ± 10.6%, 6.2 ± 7.0%, 2.8 ± 3.2%, 2.4 ± 2.8%, 8.2 ± 10.5%, 

Fig. 1. Changes in soil pH due to acid leakage and rainfall weathering simulation. a: pH of soil Taqwater leaked. b: pH of soil leaked HCl
c: pH of soil from which HF leaked. d: pH of soil from which HNO3 leaked. e: pH of soil from which H2SO4 leaked.

b

c

e

d

a
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and 3.5 ± 7.1%, respectively. After the acidic leakage, Hydrotalea 
flava, Methylobacterium phyllostachyos, Simkania negevensis, 
Paraburkholderia terrae, and Tumebacillus ginsengisoli were 
predominant. In the 34-day post-leakage samples, their average 
relative abundances were 27.2 ± 8.4%, 11.3 ± 5.9%, 6.4 ± 5.5%, 
4.3 ± 8.6%, and 3.1 ± 6.2%, respectively. In the samples of CT1 
and NT1 where HCl and HNO3 leaked, an increase in the relative 
abundance of Ralstonia syzygii, Citrobacter tructae, Citrobacter 
werkmanii, and Citrobacter cronae was observed. Specifically, in 
CT1, they showed relative abundances of 10.8%, 10.8%, 4.4%, 
and 3.9% respectively. In NT1, these percentages were 22.7%, 
13.8%, 6.5%, and 5.9% respectively. Notably, in CT1, following 
the HCl leakage, Rhodococcus qingshengii also held a significant 
proportion, with 14.2% relative abundance. In FT1 and ST1, where 

HF and H2SO4 leaked, Bacillus clarus exhibited substantial pres-
ence, with relative abundances of 9.4% and 22.7%, respectively.

Following the simulated rainfall, after 34 days, all soil columns 
showed a high relative abundance of Hydrotalea flava, Methylobac-  
terium phyllostachyos, and Simkania negevensis. Specifically, in 
CT34, FT34, NT34, and ST34, the relative abundances for 
Hydrotalea flava were 23.7%, 17.0%, 33.4%, and 34.8%, 
respectively. Methylobacterium phyllostachyos held considerable 
proportions, with relative abundances of 10.0%, 3.9%, 13.2%, and 
18.1% in these columns. In CT34, where HCl had leaked, 
Paraburkholderia terrae exhibited a relative abundance of 17.2%. 
In FT34, affected by the HF leakage, Tumebacillus ginsengisoli 
held a relative abundance of 12.5%.

In the initial phase of acid leakage, Ralstonia syzygii, known 

Table 1. Taxonomic information of the top 3 bacterial species in soils leaked from contaminants

Sample code Rank Relative abundance (%) Species Accession Number

TT1

1 0.34 Bacillus clarus NR_180213.1

2 0.17 Peribacillus frigoritolerans NR_117474.1

3 0.15 Rhodococcus qingshengii NR_145886.1

TT34

1 0.45 Bacillus clarus NR_180213.1

2 0.14 Peribacillus frigoritolerans NR_117474.1

3 0.08 Rhodococcus qingshengii NR_145886.1

CT1

1 14.26 Rhodococcus qingshengii NR_145886.1

2 10.86 Ralstonia syzygii NR_134150.1

3 10.80 Citrobacter tructae NR_180641.1

CT34

1 23.76 Hydrotalea flava NR_117026.1

2 17.22 Paraburkholderia terrae NR_113963.1

3 10.09 Methylobacterium phyllostachyos NR_108242.1

FT1

1 9.42 Bacillus clarus NR_180213.1

2 2.06 Peribacillus frigoritolerans NR_117474.1

3 0.04 Citrobacter tructae NR_180641.1

FT34

1 17.02 Hydrotalea flava NR_117026.1

2 12.57 Tumebacillus ginsengisoli NR_112564.1

3 5.11 Terrimonas lutea NR_041250.1

NT1

1 22.78 Ralstonia syzygii NR_134150.1

2 13.81 Citrobacter tructae NR_180641.1

3 6.55 Citrobacter werkmanii NR_024862.1

NT34

1 33.48 Hydrotalea flava NR_117026.1

2 13.25 Methylobacterium phyllostachyos NR_108242.1

3 9.31 Simkania negevensis NR_074932.1

ST1

1 22.72 Bacillus clarus NR_180213.1

2 5.58 Peribacillus frigoritolerans NR_117474.1

3 0.77 Ralstonia syzygii NR_134150.1

ST34

1 34.81 Hydrotalea flava NR_117026.1

2 18.17 Methylobacterium phyllostachyos NR_108242.1

3 12.92 Simkania negevensis NR_074932.1
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to reduce nitrate to nitrite, displayed a high relative abundance 
[46], suggesting its prevalence in nitrate-affected soils. Species 
from the Citrobacter genus also exhibited an elevated relative abun-
dance during this phase. Citrobacter spp. is documented to thrive 
even in low pH conditions [47]. Specifically, Citrobacter tructae 
and Citrobacter werkmanii are reported to produce indole related 
to plant hormones [47, 48]. Citrobacter werkmanii has been recog-
nized for forming robust and stable biofilms. Genetic investigations 
have identified the presence of genes associated with quorum 
sensing, such as bsmA, bssR, and bssS, along with a multitude 
of biofilm-associated genes, including hmsP, tabA, and the csg 
gene cluster [49, 50]. The formation of such biofilms likely offers 
protection against physical, chemical, and biological stresses, facili-
tating attachment to soil surfaces and preventing bacterial washout 
in dynamic environments, thereby maintaining a high population 
density. Citrobacter cronae, reported as a close relative to 
Citrobacter werkmanii, was first identified near the human rectum, 
indicating its potential to thrive in slightly acidic conditions (pH 
5~7) [51]. Rhodococcus qingshengii has been associated with influ-
encing nitrogen cycling in soil environments and is known to 
assist in the remediation of soils affected by carbendazim [52, 
53], which has a reported acidity of pH 4.48. This suggests the 
bacterium's ability to persist in low pH environments, potentially 
accounting for its high relative abundance.

After 34 days, when the soil's pH had shown considerable recov-
ery, Hydrotalea flava exhibited an elevated relative abundance. 
This bacterium has been identified in acidic mine drainage, which 
possesses notably low pH levels, suggesting its adaptability to such 
conditions [54]. Methylobacterium phyllostachyos, known as a 
methylotrophic bacterium [55], indicates the production of meth-
yl-related compounds in the soil, signaling ongoing soil remediation. 
Paraburkholderia terrae has been reported to symbiotically coexist 
in the roots of leguminous plants alongside Rhizobium and also 
demonstrates a symbiotic relationship with certain fungi [56, 57]. 
Its capabilities, such as metabolizing aromatic compounds and 
fixing nitrogen [58, 59], are indicators of soil health and restoration. 
Tumebacillus ginsengisoli, characterized by its spore formation and 
growth at pH 5 [60], is presumed to have accounted for its high 
relative abundance in soil impacted by HF leakage.

3.2.2. Terminal restriction length polymorphism
To examine the temporal changes in the soil bacterial communities 
affected by acidic contaminants in the soil, T-RFLP analysis was 
performed on the 100 collected samples using the 27F and 518R 
primers and the BsuRI restriction enzyme.

From the analysis, 338 T-RFs were identified using the 27F 
primer, and 291 T-RFs were identified using the 518R primer, 
resulting in a total of 629 T-RFs being identified. Notably, using 

0

25

50

75

100

TT1 TT34 CT1 CT34 FT1 FT34 NT1 NT34 ST1 ST34
Sample

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

Hydrotalea flava

Ralstonia syzygii

Citrobacter tructae

Methylobacterium phyllostachyos

Bacillus clarus

Rhodococcus qingshengii

Citrobacter werkmanii

Citrobacter cronae

Tumebacillus ginsengisoli

Paraburkholderia terrae

Simkania negevensis

Peribacillus frigoritolerans

Mitsuaria noduli

Rhodanobacter xiangquanii

Terrimonas lutea

Other

Fig. 2. Changes in the bacterial community on the first day and after 34 days of acid leakage using 16S rRNA gene amplicon sequencing.
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the 27F primer led to the detection of 44 key T-RFs (Fig. 3a) 
while 27 T-RFs were detected with the 518R primer (Fig. 3b). 
During the early stages of acid leaking, F205 and R112 showed 
a high relative abundance. Upon pH recovery of the soil, F212, 
F252, R113, and R194 exhibited a high relative abundance as 

well. Intriguingly, some T-RFs were exclusively detected in soils 
affected by specific acidic contaminants. For instance, T-RFs such 
as F26, F34, F73, F197, F249, F308, and R319 were observed only 
in HCl-affected soils. In HF-affected soils, the T-RFs included F54, 
F202, F293, F304, F305, F306, R11, R53, R54, and R110. For HNO3 

Fig. 3. Time series changes in the bacterial community using T-RFLP with a: 27F forward primer and b: 518R reverse primer.

a

b
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affected soils, the T-RFs were F36, F58, F71, F198, F211, F230, 
R33, R35, and R104, and for H2SO4 affected soils, they were F15, 
F18, F70, F216, F289, R32, R117, and R198.

During the initial stages of acid leaking, F205 and R112 demon-
strated a high relative abundance, and after the acid leakage, F212, 
F252, R113, and R194 showed a notable relative presence. F205 
and R112 could be proposed as early indicators for assessing soil 
conditions immediately after acid leakage, while F212, F252, R113, 
and R194 have potential as markers for evaluating soil conditions 
after pH recovery. Additionally, the unique T-RF patterns, resulting 
from specific acidic contaminants, suggest the possibility of identi-
fying the respective contaminants.

3.3. Indicator T-RFs for Forensics

To select statistically significant T-RFs associated with acidic con-
taminants from the 629 T-RFs identified through T-RFLP experi-
ments, indicator species analysis was conducted using the 
'Indicspecies' package in R.

Among the 629 T-RFs analyzed, 497 were identified as indicators 
for acidic pollutants. Specifically, 97 T-RFs were associated with 
any one of the five acidic pollutants, 44 T-RFs were associated 
with a combination of two out of the five acidic pollutants, 36 
with a combination of three acidic pollutants, and notably, 320 
T-RFs were associated with four distinct acidic pollutants (Fig. 
4). In soils contaminated with HCl, 11 marker species were identi-
fied with F197, R106, F249, and F149 being the most significant. 
For soil samples exposed to HF, out of the 15 detected species, 
R52, F263, F293, F305, F234, F199, R54, and F189 were the primary 
indicators. In the HNO3 contaminated soils, F198 was notably 
significant among the 8 species. Lastly, in the soils exposed to 
H2SO4, F259 and F225 were the principal markers out of the 7 
identified species. These findings highlight the statistical sig-
nificant associations of the respective T-RFs.

Despite not having a high relative abundance, specific T-RFs 
such as R106, F149, R52, F263, F199, F189, F198, F259, and F225 
were identified as indicator species. The selection of these T-RFs 
as indicator species is likely attributed to their heightened sensi-
tivity and representativeness to environmental changes. Some bac-
teria are recognized as indicator species due to their unique bio-
logical traits, like reproductive or metabolic capabilities [61, 62]. 
Bacteria with high relative abundance might exhibit rapid growth 
rates because they can metabolize a variety of compounds, includ-
ing specific substances. In contrast, bacteria with lower relative 
abundance might grow slower since they only metabolize specific 
compounds. According to one report, slow-growing bacteria utilize 
fewer resources, while fast-growing ones thrive due to their ability 
to use a multitude of resources. Moreover, the bacterial type, such 
as Gammaproteobacteria, has been reported to influence the rate 
at which bacteria grow [63].

Based on these findings, it was hypothesized that indicator 
species with lower relative abundance might reflect more robust 
representativeness towards specific contaminants than those with 
higher relative abundance. Particularly, the sensitivity of such 
indicator species is likely based on the expression of specific genes 
[64, 65]. Expressions of genes related to enzyme activities are 
known to occur more rapidly than changes in soil bacterial diversity 
indicators. Therefore, the development of T-RFLP analysis targeting 
functional genes responding to acidic stress is required for more 
accurately identifying indicator species. In soil environments near 
mines with low pH values, genes related to dehydrogenase, fluo-
rescein activity, and peroxidase serve as bioindicators [66]. In 
soils contaminated with organic pollutants, the expression of stress 
proteins like hsp70 and hsp60 is used for biological monitoring 
against metal and organic soil exposure [64, 67]. By analyzing 
these sensitive indicator species targeting specific functional genes, 
more relevant indicator species can be precisely identified.

Fig. 4. Indicator T-RFs for tapwater, HCl, HF, HNO3, and H2SO4.
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3.4. Data Augmentation and Machine Learning-based Forensics

To predict acidic contaminants, four machine learning algo-
rithms – SVM, KNN, RF, and ANN – were used. The input data 
consisted of 100 samples containing information on 97 T-RFs that 

are indicator species for a specific contaminant, and an additional 
100 samples were doubled using GAN for data augmentation (Fig. 
5).

As a result, using the original 100 samples without augmentation, 
SVM and KNN showed an accuracy of 72%, but ANN demonstrated 

Fig. 5. Standardized relative abundance values of 100 samples and 97 selected indicators T-RF. a: Raw sample, b: Augmented sample.

a

b
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the highest performance with 88% accuracy (Table 2). On the 
other hand, when using a total of 200 samples, including both 
the original 100 samples and the additional 100 augmented samples, 
all machine learning algorithms improved their accuracy in predict-
ing acidic contaminants. Notably, ANN achieved a high accuracy 
of up to 98%. When using the non-augmented samples, the recall 
values, which indicate how well the models correctly identified 
the actual cases, for H2SO4 in SVM, KNN, RF, and ANN were 
relatively low at 40, 20, 40, and 80%, respectively. However, a 
notable improvement was observed when using the augmented 
samples as input data; the recall for H2SO4 increased to 90, 70, 
70, and 90%, respectively. These results suggest that using GAN 
can amplify the characteristics of specific samples [36, 68].

The advancement of molecular biology equipment has sig-
nificantly reduced the time and cost of conducting molecular biol-
ogy experiments [17]. However, obtaining biological da ta still 
requires intensive time and costs due to complex procedures, in-
cluding molecular biological monitoring such as T-RFLP, which 
can take up to a day to process and yield results [69, 70]. Moreover, 
the rigorous screening process in selecting crucial data, such as 
indicator species, often reduces the amount of available 

information. It has also been reported that a small amount of 
input data is insufficient for building a proper ANN model, leading 
to research estimating the minimum sample size needed to address 
this issue [71, 72]. In supervised machine learning algorithms, 
a small amount of input data often leads to overfitting during 
the training phase, preventing the model from being perfectly 
generalized [73, 74]. Therefore, there are many efforts to avoid 
this through cross-validation, regularization, dimensionality re-
duction, and data augmentation [75, 76]. Especially, data augmenta-
tion can prevent overfitting by increasing the diversity of data, 
thus allowing the model to be trained to respond to a variety 
of scenarios [76, 77]. A forensic study processed 50 samples using 
two restriction enzymes, HhaI and AluI, to generate T-RF data 
for increased accuracy [78]. Another study in nitrogen treatment 
bioreactors used the SMOTE (Synthetic Minority Over-Sampling) 
technique to generate additional data points, resulting in an in-
crease in prediction accuracy from 84% to 88.2% [38]. Therefore, 
if molecular biological data generated from a limited number of 
experiments can be meaningfully augmented, it could be a cost-ef-
fective method for environmental monitoring.

When comparing machine learning algorithms, both SVM and 

Table 2. Classification performance of acidic pollutants by algorithm: Raw sample vs. augmented sample

　　 　
Chemical

Raw sample Raw sample + Augmented sample

precision recall f1-score support precision recall f1-score support

SVM

Control 0.71 1.00 0.83 5 0.91 1.00 0.95 10

HCl 0.67 0.80 0.73 5 0.80 0.80 0.80 10

HF 0.80 0.80 0.80 5 1.00 0.90 0.95 10

HNO3 0.60 0.60 0.60 5 0.78 0.70 0.74 10

H2SO4 1.00 0.40 0.57 5 0.82 0.90 0.86 10

accuracy 0.72 0.72 0.72 0.72 0.86 0.86 0.86 0.86

KNN

Control 1.00 1.00 1.00 5 0.77 1.00 0.87 10

HCl 0.67 0.80 0.73 5 0.82 0.90 0.86 10

HF 0.83 1.00 0.91 5 1.00 0.70 0.82 10

HNO3 0.60 0.60 0.60 5 0.55 0.60 0.57 10

H2SO4 0.33 0.20 0.25 5 0.88 0.70 0.78 10

accuracy 0.72 0.72 0.72 0.72 0.78 0.78 0.78 0.78

RF

Control 1.00 1.00 1.00 5 1.00 1.00 1.00 10

HCl 0.67 0.80 0.73 5 0.54 0.70 0.61 10

HF 0.71 1.00 0.83 5 1.00 0.90 0.95 10

HNO3 0.75 0.60 0.67 5 0.88 0.70 0.78 10

H2SO4 0.67 0.40 0.50 5 0.70 0.70 0.70 10

accuracy 0.76 0.76 0.76 0.76 0.80 0.80 0.80 0.8

ANN

Control 1.00 1.00 1.00 5 1.00 1.00 1.00 10

HCl 0.63 1.00 0.77 5 1.00 1.00 1.00 10

HF 1.00 1.00 1.00 5 1.00 1.00 1.00 10

HNO3 1.00 0.60 0.75 5 0.91 1.00 0.95 10

H2SO4 1.00 0.80 0.89 5 1.00 0.90 0.95 10

accuracy 0.88 0.88 0.88 0.88 0.98 0.98 0.98 0.98



Suin Park et al.

12

KNN showed an identical accuracy of 72% in predicting acidic 
contaminants, which is believed to be due to their methods of 
learning the relationship between input values and target variables. 
As the volume of data increases, SVM determines a decision boun-
dary using a hyperplane to separate multiple classes, classifying 
all data within this boundary into one category (Figs. S1 and S5) 
[79, 80]. In contrast, the performance of KNN depends on the 
number of nearest neighbors, K, considered, and increasing K 
can also increase the computational time (Figs. S2 and S6) [81, 
82]. This distinction between the two algorithms suggests that 
as the quantity of data grows, there will be a difference in 
performance. In conclusion, setting a decision boundary to classify 
data within a particular region is anticipated to be more effective 
for processing large datasets than connecting multiple lines [83]. 
RF may not always be effective in handling large datasets. 
Composed of multiple decision trees, RF can produce consistent 
results regardless of the data volume if there are distinct features 
in even a small amount of data, allowing for classification based 
on several questions (Figs. S3 and S7) [84-86]. This suggests that 
RF can achieve excellent performance with limited data. However, 
data quality is crucial, and the risk of overfitting should not be 
overlooked [87, 88]. ANN is based on the principles of biological 
neural networks, leveraging multiple neural network layers to cap-
ture the intricate features and relationships within data (Figs. S4 
and S8). Such a structure underscores the superior performance 
of ANN when juxtaposed with other machine learning algorithms 
(Table 2). Notably, during the learning process of ANN, back-
propagation is utilized to compute the derivative of the loss func-
tion, adjusting the weights of each node to minimize errors. 
Increased computations and iterative error corrections adeptly re-
flect the complexity and diversity of the data [89, 90]. Hence, 
when employed with a substantial dataset, ANN has demonstrated 
an impressive accuracy of up to 98% [72, 91]. When comparing 
the four machine learning algorithms, it is evident that ANN stands 
out due to its unique advantages in predicting acidic contaminants. 
Inspired by the structure of biological neural networks, ANN lever-
ages multiple layers to intricately capture features and relationships 
within data. This complex structure, combined with its ability 
to adjust weights through backpropagation and handle the complex-
ity and diversity of large datasets, makes ANN particularly effective 
for such predictions, as evidenced by its impressive accuracy of 
up to 98%.

4. Conclusions

The experiment on acid leakage revealed a rapid decrease in soil 
pH, and while it recovered over time, sterilized and non-sterilized 
soils showed different recovery patterns. From the 16S rRNA ampli-
con sequencing, Ralstonia syzygii and Citrobacter spp. dominated 
initially, but later, Hydrotalea flava and Methylobacterium phyllos-
tachyos emerged as the primary bacteria. The T-RFLP study un-
veiled temporal changes in the bacterial community due to acid 
leakage and suggested the potential of identifying pollutants 
through unique T-RFs patterns. The dataset was augmented using 
the indicator species data, bringing the total to 200 samples. Testing 

with machine learning algorithms, ANN demonstrated the highest 
accuracy, achieving 88% and 98% with the original and augmented 
datasets, respectively. These results provide a deeper under-
standing of the differences among machine learning algorithms 
and performance variations depending on dataset size.
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