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Abstract: This work presents a finite-time robust path-following control scheme for perturbed
autonomous ground vehicles. Specifically, a novel self-tuning nonsingular fast-terminal sliding
manifold that further enhances the convergence rate and tracking accuracy is proposed. Then,
uncertain dynamics and external disturbances are estimated by a high-gain disturbance observer to
compensate for the designed control input. Successively, a super-twisting algorithm is incorporated
into the final control law, significantly mitigating the chattering phenomenon of both the input
control signal and the output trajectory. Furthermore, the global finite-time convergence and stability
of the whole proposed control algorithm are proven by the Lyapunov theory. Finally, the efficacy
of the proposed method is validated with comparisons in a numerical example. It obtains high
control performance, reduced chattering, fast convergence rate, singularity avoidance, and robustness
against uncertainties.

Keywords: nonsingular fast terminal sliding mode manifold; self-tuning rule; robust control;
finite-time convergence; autonomous ground vehicles; disturbance observer; Lyapunov approach
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1. Introduction

With the lightning speed of advances in artificial intelligence, smart cities, self-driving
vehicles, robots, and others, autonomous ground vehicles (AGV) as intelligent mobile
robots have been widely applied to various fields [1]. They play an essential role in
both domestic and industrial applications to enhance safety and efficiency requirements.
Thus, control for path following has always been a topic of significant interest in the AGV
field, which garners a great deal of attention from numerous researchers [2]. In path
following, position and orientation errors are handled through several approaches [3,4].
Although their effectiveness was proven to bring good performance, the system stability
is hardly considered [5], and it is quite complex to consider a multi-input–multi-output
nonlinear system [6–8]. Fortunately, the control design process for path following can be
simplified with the assistance of the Lyapunov function [9]. It not only can reach high
precision but also guarantees system stability in terms of the control principle.

The well-known sliding-mode control (SMC) framework has been considered as one
of the most promising candidates for robust controller designs, as it can attenuate the
influences of uncertainties/disturbances thoroughly, such as a fractional-order SMC [10]
or coupled adaptive rule in SMC [11,12]. Basically, the design structure consists of the
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reaching phase and sliding phase. The reaching phase drives state variables toward the
sliding surface, which deals with the lumped uncertainty of the system. After that, the state
variables are driven toward the origin point along the sliding surface in the sliding phase,
which guarantees the convergence property of the controller. It is noteworthy that the
key idea in the SMC is the finite-time convergence of the system states to a pre-designed
sliding surface in its state space and then maintaining the system trajectory on this surface
for all future times. This is achieved through the application of a discontinuous control
action that switches between different states, ensuring that the system can counteract any
disturbances or uncertainties and follow the desired trajectory closely. However, the state
trajectory is hard to converge toward the origin point in a finite time due to the linear
sliding surface. Thus, finite-time convergence of the sliding phase is a key challenge.
With regard to this issue, the nonlinear sliding surface is developed, namely a terminal
sliding mode control (TSMC) [13]. This sliding surface is designed to guide the sliding
variables of the system toward the equilibrium point within a finite time span, ensuring
fast convergence. To further enhance the convergence speed and overcome the slow
convergence problem, a fast TSMC (FTSMC) is introduced in [14,15]. The FTSMC builds
upon the TSMC concept [16] and provides an improved control scheme to achieve quicker
and more efficient convergence for the system. Moreover, when the sliding variable is
approximately zero, it obeys the TSMC working principle and the finite-time convergence
is ensured. Inherently, the FTSMC still suffers from the singularity problem of the TSMC,
which is a major limitation of the SMC design. To overcome the limitation, a nonsingular
FTSMC (NFTSMC) is proposed in [17]. It aims to upgrade the FTSMC to a new version
that avoids singularity issues. Nonetheless, the sliding surface gains of the NFTSMC may
remain fixed, lowering the convergence rate of the state variables in the sliding phase.
Hence, an adaptive NFTSMC (ANFTSMC) [18,19] is proposed to solve the fixed-gain
shortcoming. However, the singularity caused by the negative fractional power on this
sliding surface has not yet been thoroughly addressed.

On the other hand, the chattering phenomenon is a common issue in sliding-mode
control systems due to the high-frequency switching of the control input [20,21]. This
happens due to the inherent switching nature of the SMC algorithm caused by using
the signum function, which continuously toggles the control input between two states
to keep the system’s state on the desired sliding surface. While effective for maintaining
robust control in the presence of disturbances and uncertainties, this incessant switching
can lead to significant noise generation, which degrades the control performance as well
as wear on actuators in practical systems. To address this problem, the boundary layer
(BL) method has been introduced, replacing the signum function with sigmoid [22] or
saturation functions [23]. The BL method imposes bounds on the control output, strik-
ing a balance between control smoothness and system robustness. Despite the effective-
ness, unavoidable trade-offs are created between these two aspects. An alternative ap-
proach to enhance both robustness and control smoothness is the super-twisting algorithm
(STW) [24,25]. This algorithm ensures finite-time establishment of the sliding mode, leading
to improved robustness and smoother control output simultaneously. Additionally, reduc-
ing the control gain during the reaching phase is seen as a promising solution. This can
be achieved through the use of fuzzy logic systems (FLS) and neural networks (NNs) [26].
These techniques can dynamically adjust the control gain based on system conditions,
contributing to improved control performance and reduced chattering effects. Neverthe-
less, these methods require expert knowledge or training processes for approximating the
unknown system dynamics, which is unsuitable for dealing with external disturbances.
Meanwhile, the disturbance observer (DO) technique is a robust approach commonly used
for estimating both uncertainties and external disturbances [27,28]. Moreover, the esti-
mated uncertainties and disturbances in the system can be compensated, improving the
robustness of the control system.

Inspired by the above-mentioned problems, this paper proposes a new finite-time
robust control framework for the path-following of the perturbed AGVs. Simultaneously,



Mathematics 2024, 12, 549 3 of 16

we integrate both a high-gain disturbance observer (HGDO) and a super-twisting algorithm
(STW) to not only reduce chattering but also increase control accuracy. The key points of
this work are summarized as follows:

• The novel self-tuning nonsingular fast terminal sliding manifold (SNFTSM) for a
robust control design is proposed; it delivers a closed-loop control with a fast con-
vergence rate, singularity avoidance, and high performance of the output against
uncertain terms.

• The proposed control framework based on the novel SNFTSM is integrated with the
HGDO technique and the STW to simultaneously obtain great tracking performance
and successfully mitigate chattering phenomena.

• A rigorous analysis is provided to theoretically prove the global finite-time conver-
gence and stability of the whole closed-loop system in both phases. Moreover, the per-
formance of the control approach in the presence of uncertainties and disturbances is
confirmed.

The remaining sections of the paper are structured as follows: Section 2 provides
the problem formulation. Section 3 describes the proposed control method, detailing its
components and implementation. Results with the numerical example are discussed in
Section 4. Finally, the conclusions are given in Section 5.

2. Problem Formulation

General robot dynamics can be described by the equation of motion as the following.

M(q)q̈ + V(q, q̇)q̇ + Λ⊤(q)λ + ∆d(q, q̇) = B(q)u (1)

where q, q̇, and q̈ ∈ Rn×1 denote the position, velocity, and the acceleration, respectively;
u denotes the control input vectors; M(q) ∈ Rn×n is a symmetric positive definite inertia
matrix; V(q, q̇) ∈ Rn×n is the centripetal and Coriolis matrix; B(q) ∈ R is the input matrix;
Λ(q) is the matrix associated with the kinematic constraints with Lagrange multipliers
λ [29]; ∆d = Td + fc is the vector of bounded unknown disturbances Td and the surface
friction fc.

To simplify the dynamic model, (1) can be presented as

q̈ = M−1(q)(B(q)u + f (q, q̇) + g(t, q, q̇)) (2)

where f (q, q̇) = −M−1(q)V(q, q̇)q̇ and g(t, q, q̇) = −M−1(q)(Λ⊤(q)λ +∆d(q, q̇)) denote
the nominal term and the lumped disturbance and uncertainty terms in the system, respec-
tively.

Assumption 1. According to [4,30–32], suppose that the lumped disturbance g and its derivative
ġ are differentiable and bounded.

∥g(t, q, q̇)∥ ≤ δg (3)

∥ġ(t, q, q̇)∥ ≤ δġ (4)

where δg and δġ are positive constants.

3. The Proposed Control Approach

In this section, we present the design of a novel SNFTSM that aims to enhance fast-
tracking accuracy within a finite time frame. Building upon this advancement, we introduce
a new finite-time robust control scheme that integrates both the HGDO technique and the
STW. The structure of the proposed controller is illustrated in Figure 1.
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Figure 1. Structure of the closed-loop AGV system under the proposed control scheme with STW
and HGDO.

3.1. Design of a Novel SNFTSM

To obtain a fast finite-time convergence and singularity avoidance of the terminal
sliding mode surface, a novel SNFTSM is proposed as follows:

s = q̇e
υ + κ̂1qυγ

e + κ̂2qe (5)

where qe = qd − q and q̇e = q̇d − q̇ are the differential values between the output signal and
the desired signal. Herein, qd and q̇d represent the desired trajectory and its time derivative,
respectively. To ensure generality, we introduce the parameter v = mv/nv, where mv and
nv are consecutive positive odd numbers satisfying 1 < v < 2. Furthermore, the sliding
surface incorporates an additional positive odd number γ to enhance its versatility. The self-
tuning gains for the fast and terminal terms of the sliding surface are denoted as κ̂1 and κ̂2,
respectively, and their design is expressed as follows:

κ̂1 = k1eη1(qα
e −µα) (6)

κ̂2 = k2e−η2(q
β
e −µβ) (7)

where e represents the exponential function; k1, k2, η1, and η2 are positive values; α, β are
the integer constant values to adjust the convergence rate; and µ = ±(k1/k2)

1/(1−vγ).

Remark 1. It can be seen that the initial point at any position in the state space can approach the
sliding phase in finite time. Owing to the exponential function, the magnitude of κ̂1 (6) and κ̂2 (7)
are changeable values and inverse to each other depending on the system error. Thus the reaching
law can be self-adjusted; it enhances faster convergence time of reaching motion.

Theorem 1. The proposed SNFTSM (5) guarantees fast convergence from the initial point qe(0)
to µ and from µ to the origin (i.e., zero) in a finite time for the state error in the sliding phase.

Proof. When the system error moves to the sliding phase, the sliding surface becomes
q̇e

υ + κ̂1qυγ
e + κ̂2qe = 0. Then q̇e =

(
−κ̂1qυγ

e − κ̂2qe
)1/v. To prove Theorem 1, the Lyapunov

candidate function is selected as follows:

V1 =
1
2

q2
e (8)
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The time derivative of V1 can be given as

V̇1 = qe q̇e

=
(
−κ̂1qυ(γ+1)

e − κ̂2qv+1
e

)1/v (9)

When the initial position of error is far from the origin (qe(0) > µ), thanks to the
unique feature of the new manifold (see Remark 1), the fast term containing κ̂v

1qvγ
e strongly

suppresses the terminal term κ̂v
2qv+1

e . Then, (9) becomes the expression as follows:

V̇1 =
(
−κ̂1qυ(γ+1)

e − κ̂2qv+1
e

)1/v

≤
(
−κ̂1qυ(γ+1)

e

)1/v

≤
(
−k1qυ(γ+1)

e

)1/v

≤ −k1/v
1 V(γ+1)/2

1

(10)

Taking the integral for both sides of (10) with respect to time yields the following
result: ∫ V1(µ)

V1(qe(0))
V−(γ+1)/2

1 dV1 ≤
∫ t1

0
−k1/v

1 dt (11)

where V1(qe(0)) = 1
2 (qe(0))

2 and V1(µ) =
1
2 (µ)

2.
The result from solving Equation (11) is expressed as

t1 ≤ 2V1(qe(0))(1−γ)/2

(1 − γ)k1/v
1

− 2V1(µ)
(1−γ)/2

(1 − γ)k1/v
1

≤ 2(1+γ)/2qe(0)1−γ

(1 − γ)k1/v
1

− 2(1+γ)/2µ1−γ

(1 − γ)k1/v
1

(12)

Based on (12), the proposed control approach achieves a reduction in the control error
from the initial position qe(0) to µ within a finite time. As the system state approaches the
equilibrium point (|qe| < |µ|), the term κ̂2qv+1

e dominates over κ̂1qvγ
e , ensuring finite-time

convergence of the SNFTSM (5). The time derivative of the Lyapunov function (9) can be
expressed as follows:

V̇1 =
(
−κ̂1qυ(γ+1)

e − κ̂2qv+1
e

)1/v

≤
(
−κ̂2qv+1

e

)1/v

≤
(
−k2qv+1

e

)1/v

≤ −k1/v
2 V(v+1)/(2v)

1

(13)

This expression demonstrates the effectiveness of the suggested strategy in achieving
finite-time convergence of the system error and ensuring stability near the equilibrium
point. Taking the integral for both sides of (13) with respect to time yields the following.∫ 0

V1(µ)
V(γ+1)/(2v)

1 dV1 ≤
∫ t2

0
−k1/v

2 dt (14)

Solving (14) results in



Mathematics 2024, 12, 549 6 of 16

t2 ≤ 2vV1(µ)
(3v+1)/(2v)

(3v + 1)k1/v
2

≤ 2(−2v−1)/vvµ(3v+1)/v

(3v + 1)k1/v
2

(15)

According to (15), the control error converges from µ to 0 in finite time. The duration
it takes for the system’s error state to reach convergence during the sliding phase can be
calculated as

T = t1 + t2 ≤2(1+γ)/2qe(0)1−γ

(1 − γ)k1/v
1

− 2(1+γ)/2µ1−γ

(1 − γ)k1/v
1

+
2(−2v−1)/vvµ(3v+1)/v

(3v + 1)k1/v
2

(16)

In short, the introduction of the SNFTSM allows the system error to rapidly converge
to the equilibrium point in finite time, starting from the initial point of the sliding phase.
This demonstrates the effectiveness and efficiency of the proposed approach in achieving
fast and precise control performance.

This completes the proof of Theorem 1.

Taking the derivative of the SNFTSM (5) with respect to time results in the following
expression:

ṡ = κ̂1

(
η1vαq(α+vγ−1)

e + vγq(vγ−1)
e

)
q̇e + κ̂2

(
q̇e − η2vβqβ

e q̇e

)
+ vq̇e

(v−1) q̈e (17)

To simplify the derivative of the sliding surface, (17) is rewritten as

ṡ = −q̇eΩ + vq̇(v−1)
e q̈e (18)

where q̈e = q̈− q̈d is the angle acceleration error and Ω = −κ̂1

(
η1vαq(α+vγ−1)

e + vγq(vγ−1)
e

)
+

κ̂2(η2vβqβ
e − 1). Note that q̇e and q̇v−1

e are the matrix diagonal expression and the Ω is the
matrix column expression.

Substituting (2) into (18), it becomes

ṡ = −q̇eΩ + vq̇(v−1)
e

[
M−1(q)B(q)u + f (q, q̇, u) + g(t, q, q̇)− q̈d

]
(19)

Based on the proposed SNFTSM and (19), the desired control input of the self-tuning
nonsingular fast terminal sliding mode controller (SNFTSMC) is designed to achieve
two key objectives simultaneously. Firstly, it guarantees robust and precise path-following
performance. Secondly, it can adeptly handle external disturbances and model uncertainties
present in the system. The input control is exposed as follows:

u = un + ur (20)

where un is the nominal control term and ur is the control signal for the reaching phase of
the proposed control algorithm. The detailed expressions are summarized as follows:

un = M(q)B−1(q)
(

q̈d − f (q, q̇, u) + v−1q̇(2−v)
e Ω

)
(21)

ur = −M(q)B−1(q)Υ∥s∥
∥∥∥vq̇(v−1)

e

∥∥∥(δg + κ) (22)
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where κ is a positive number, Υ is designed to overcome the lumped uncertainty as follows:

Υ =


(

s⊤vq̇(v−1)
e

)⊤
∥∥∥s⊤vq̇(v−1)

e

∥∥∥2 , if
∥∥∥s⊤vq̇(v−1)

e

∥∥∥ > 0

0, if
∥∥∥s⊤vq̇(v−1)

e

∥∥∥ = 0

(23)

Theorem 2. For the system dynamics (2) with lumped uncertainty, the tracking error qe diminishes
within a finite time interval towards the equilibrium point by the control signal (20). This finite-time
convergence property is essential for achieving precise and robust control performance in the presence
of uncertainties.

Proof. Considering the following Lyapunov candidate function for the designed con-
trol (20)

V2 =
1
2

s⊤s (24)

Using (19)–(23), the time derivative of V2 can be rewritten as

V̇2 =s⊤ ṡ

=s⊤
(
−q̇eΩ + vq̇(v−1)

e

(
M−1(q)B(q)u + f (q, q̇, u) + g(t, q, q̇)− q̈d

))
=s⊤vq̇(v−1)

e g − s⊤vq̇(v−1)
e

(
s⊤vq̇(v−1)

e

)⊤
∥∥∥s⊤vq̇(v−1)

e

∥∥∥2 ∥s∥
∥∥∥vq̇(v−1)

e

∥∥∥(δg + κ)

=s⊤vq̇(v−1)
e

g −

(
s⊤vq̇(v−1)

e

)⊤
∥∥∥s⊤vq̇(v−1)

e

∥∥∥2 ∥s∥
∥∥∥vq̇(v−1)

e

∥∥∥(δg + κ)


≤s⊤vq̇(v−1)

e g −
∥∥∥vq̇(v−1)

e

∥∥∥(δg + κ)∥s∥

≤
∥∥∥vq̇(v−1)

e

∥∥∥(∥g∥ − (δg + κ)
)
∥s∥

(25)

According to (3) in Assumption 1, (25) can be rewritten as

V̇2 ≤ −
∥∥∥vq̇(v−1)

e

∥∥∥κ∥s∥

≤ −σV1/2
2

(26)

where σ =
∥∥∥vq̇(v−1)

e

∥∥∥κ > 0.
For the finite-time stability from [30,31], the reaching phase of the proposed control

strategy using (5) converges to zero within finite time.
This completes the proof of Theorem 2.

3.2. Design of the Proposed Control Framework with HGDO

In this subsection, the HGDO technique is employed to estimate the profile of lumped
uncertainty, which improves the tracking precision of the state variables with respect to
their references.

The lumped uncertain term g(t, q, q̇) in (2) can be recalculated as follows:

g(t, q, q̇) = q̈ − M−1(q)B(q)u − f (q, q̇, u) (27)
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This term is estimated by ĝ, which can be obtained as

˙̂g =
1
ε

(
q̈ − M−1(q)B(q)u − f (q, q̇, u)− ĝ

)
(28)

where ε is the positive observer gain. Note that 1
ε is the matrix diagonal expression and ε is

the matrix column expression.
In order to avoid the amplified noise by the high gain, the auxiliary state variable is

given by

Z = ĝ − q̇
ε

(29)

Then, the dynamics of the auxiliary state variable are presented as follows:

Ż = −1
ε

(
Z − q̇

ε

)
+

1
ε

(
−M−1(q)B(q)u − f (q, q̇, u)

)
(30)

Theorem 3. For the dynamic system in (2), the HGDO technique (28) with a sufficiently large gain
ensures an arbitrarily bounded estimation performance of the lumped uncertainties in
finite time.

Proof. To prove the finite time and stability of the HGDO, let us define the estimation error
g̃ = g − ĝ, then the Lyapunov function is considered as follows:

V3 =
1
2

g̃⊤ g̃ (31)

The time derivative of V3 can be rewritten as

V̇3 = g̃⊤ ˙̃g

= g̃⊤
(
−1

ε
g̃ + ġ

)
= −1

ε
g̃⊤ g̃ + g̃⊤ ġ

(32)

Using Young’s inequality, g̃⊤ ġ ≤ 1
2 g̃⊤ g̃ + 1

2 ġ⊤ ġ ≤ 1
2 g̃⊤ g̃ + 1

2 δ2
ġ, and (4) in Assump-

tion 1, substituting into (32) to obtain the following result:

V̇3 ≤
(

1
ε
− 1

2

)
g̃⊤ g̃ +

1
2

δ2
ġ

≤ −aV3 + b
(33)

where a = min
(

2Γmin

(
1
ε −

1
2

))
and b = 1

2 δ2
ġ. Γmin represent the minimum eigenvalues of

a matrix.
Multiplying eat to both sides of inequality V̇3 in (33), then taking the integral with

respect to time, is obtained as

∫ V3(t3)eat3

V3(0)
d(V3eat) ≤

∫ t3

0

b
a

eatdt (34)

where V3(0) and V3(t3) are the Lyapunov of the HGDO error at the initial position and at
position Π, respectively.

Solving inequality (34), we have

V3(t3) ≤
(

V3(0)−
b
a

)
e−at +

b
a

(35)
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Due to the magnitude of V3(0) being unknown, there are two possible cases. The first
case occurs when V3(0) ≤ 2b

a . We have V3(t3) ≤ b
a e−at + b

a ≤ 2b
a ; the error of HGDO is

smaller than a constant value, Π =
√

4b
a , ∀t, then Theorem 3 is satisfied. The second case is

V3(0) > 2b
a . The magnitude of V3(t3) is chosen as 2b

a , then we obtain b
a ≤

(
V3(0)− b

a

)
e−at.

Thus, the HGDO state error will move from the initial state to Π =
√

4b
a within a finite

time t3 ≤ 1
a ln

( a
b V3(0)− 1

)
.

Hence, the proof of Theorem 3 is completed.

Let g̃ = g − ĝ be the estimation error. The proposed control signals (21) and (22) are
redesigned based on (28) to overcome the HGDO error as

un = M(q)B−1(q)
(

q̈d − f (q, q̇, u)− ĝ + v−1q̇(1−v)
e Ω

)
(36)

ur = −M(q)B−1(q)Υ∥s∥
∥∥∥vq̇(v−1)

e

∥∥∥(||Π||+ κ) (37)

where the norm of ||Π|| is a positive constant value with the upper bounded value,
i.e., ||Π|| ≤ δg + g̃, which is given in detail in the proof of Theorem 3.

Theorem 4. For the system dynamics presented in (2), with the bounded lumped uncertainty
estimation satisfied in Theorem 3, the tracking error converges quickly to the equilibrium point,
i.e., qe ∼= 0 in finite time by the designed control input (20) based on (36) and (37) while the global
system stability is guaranteed.

Proof. To verify the finite time of the whole proposed controller, the Lyapunov function is
considered as follows:

V4 =
1
2

s⊤s (38)

Substituting (36) and (37) into (19), the time derivative of V4 is computed as

V̇4 =s⊤ ṡ

=s⊤
(
−Ω + vq̇(v−1)

e

(
M−1(q)B(q)u + f (q, q̇, u) + g(t, q, q̇)− q̈d

))
=s⊤vq̇(v−1)

e g̃ − s⊤vq̇(v−1)
e

(
s⊤vq̇v−1

e
)⊤∥∥∥s⊤vq̇v−1

e

∥∥∥2 ∥s∥
∥∥∥vq̇v−1

e

∥∥∥(∥Π∥+ κ)

=s⊤vq̇(v−1)
e

g̃ −
(
s⊤vq̇v−1

e
)⊤∥∥∥s⊤vq̇v−1

e

∥∥∥2 ∥s∥
∥∥∥vq̇v−1

e

∥∥∥(∥Π∥+ κ)


≤s⊤vq̇(v−1)

e g̃ −
∥∥∥vq̇(v−1)

e

∥∥∥(∥Π∥+ κ)∥s∥

≤
∥∥∥vq̇(v−1)

e

∥∥∥(∥g̃∥ − (∥Π∥+ κ))∥s∥

(39)

Based on (4) in Assumption 1, (39) can be rewritten as

V̇4 ≤ −
∥∥∥vq̇(v−1)

e

∥∥∥κ∥s∥

≤ −σV1/2
4

(40)

According to (40), the system error converges quickly to zero in finite time by the
proposed control scheme, while the global system stability is guaranteed.

This completes the proof of Theorem 4.
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3.3. Design of the Proposed Control Scheme with STW

In order to eliminate the chattering phenomenon in the control system, the control
law is upgraded in the reaching phase by incorporating the STW in [24]. Thus, the robust
term Υ∥s∥

∥∥∥vq̇(v−1)
e

∥∥∥(||Π||+ κ) of the control signal ur for the reaching phase in (37) can be
replaced by

sup(s) = k3|s|1/2sign(s)− k4

∫ t

0
sign(s)dt (41)

where the inequalities of the gain control parameters, k3 > 2κ and k4 > k3
5k3+4κ
2k3−4κ κ, are

satisfied.
As we know, the STW operates by dynamically adjusting the control signal to compen-

sate for uncertainties and disturbances without requiring precise knowledge of the system
dynamics. The algorithm consists of two components. First, the twisting control term
reacts to the sign of the sliding variable, providing robustness and ensuring the trajectory
approaches the sliding surface. The second component is the integration of the signum
function which integrates the sign of the sliding variable over time, smoothing the control
action and thereby reducing chattering. It is noteworthy that the sliding surface defini-
tion is crucial for control performance including the effectiveness of chattering reduction.
Fortunately, the combination of the proposed SNFTSM fulfills the expectations, while the
stability properties of the STW are maintained via the Lyapunov theory in [24]. The control
ur is finally expressed as follows:

ur = −M(q)B−1(q) sup(s) (42)

Remark 2. According to the proven Theorems 2 and 4, the proposed manifold (5) guarantees
the global finite-time convergence and stability criterion. Therefore, the newly proposed control
scheme (36) presented in conjunction with the STW algorithm (42) inherits these properties. More-
over, it not only achieves rapid and smooth convergence and effective singularity avoidance but
also successfully eliminates chattering in the trajectory. This comprehensive approach enhances the
overall control performance and stability of the system, making it robust and accurate in diverse
operating conditions.

4. Numerical Examples

In this section, a numerical example is illustrated to proceed with the evaluation of
the proposed control framework, the following features are assessed: response speed,
accuracy, and chattering mitigation efficiency. To do that, other control methods such as the
NFTSMC [33] and the AFTSMC [19] are applied in turn to demonstrate the validity of the
suggested approach. Meanwhile, the SNFTSMC scheme can be regarded as a special case
of the proposed control scheme, if not incorporating the HGDO estimation, for the purpose
of comparison. To be fair, they are also integrated with the STW algorithm.

Remark 3. The control signals uN and uA are generated with NFTSMC and AFTSMC as the
following, respectively.

uN =M(q)B−1(q)
(

q̈d − f (q, q̇, u)− 1
vκN1

q̇(2−v)
e Ω

−
φκN1

vκN2

|qe|(φ−1) q̇(2−v)
e − k3|s|1/2sign(s)−k4

∫ t

0
sign(s)dt

) (43)
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uA =M(q)B−1(q)
(

q̈d − f (q, q̇, u)−
κA1

1 + e−ηA1
(|qe |−ϕ)

q̇e

−
κA1 ηA1 q̇esign(qe)e

−ηA1
(|qe |−ϕ)

(1 + e−ηF1(|qe |−ϕ))2
−

κA2 ρ

1 + e−ηA2 (|qe |−ϕ)
|qe|(ρ−1) q̇e

−
κA2 ηA2 q̇ee−ηA2 (|qe |−ϕ)

(1 + e−ηA1
(|qe |−ϕ))2

|qe|ρ − k3|s|1/2sign(s)−k4

∫ t

0
sign(s)dt

) (44)

The parameters of those control algorithms are chosen as: v = ϕ = 5/3, ρ = 1/v =
3/5, κA1 = κN1 = k1 = diag([0.5, 0.5]), κA2 = κN2 = k2 = diag([1, 1]), k3 = diag([10, 10]),
k4 = diag([3, 3]), η1 = 0.1, η2 = 0.1, α = 2, β = 2, γ = 1, mv = 5, nv = 3, ϵ = 0.002.
The formulations of system matrices M, V, B, Λ are derived in Appendix A, in which
m = 1.8 kg, I = 0.0028 kg · m2 and Iw = 0.008 kg · m2 are the mass, the total equivalent
inertia, and the inertia for each driving wheel of the AGV, respectively; each driving wheel
has the radius of R = 0.033 m with a motor about the wheel axis; L = 0.1435 m is the
distance between two wheels; the objective is to track a lemniscate trajectory described by
qd(t) =

[
xd(t) yd(t) atan2(ẋd(t), ẏd(t))

]⊤, with xd(t) = 10 sin(π
2 t); yd(t) = 10 sin(π

4 t);
where atan2(·, ·) is the four-quadrant inverse tangent function; Td = m · g · sin(θd) · R with
moving on an incline of θd = 5◦; fc = b · q̇ + µs · m · g with the viscous damping coefficient
b = 0.5 and the coefficient of static friction µs = 1 between the AGV’s wheels and the
surface; d = 10−3 m; g = 9.81 m/s2. To establish the transformation of coordinates between
the two coordinate systems in Figure 2, it is the world coordinate system denoted as XOY
and the vehicle coordinate system denoted as xoy, in which θ represents the rotation angle
between those coordinates and (xc, yc) is the coordinates of the origin o in the XOY system.
Utilizing the homogeneous coordinate form, the transformations of coordinates between
the two coordinate systems can be expressed as follows:x

y
1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1 0 −xc
0 1 −yc
0 0 1

X
Y
1

 (45)

or, X
Y
1

 =

1 0 xc
0 1 yc
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

x
y
1

 (46)

Figure 2. The coordinate system of the AGV.

In the tracking trajectory scenario, Figure 3 displays the trajectories of the coordi-
nates of the origin o(xc, yc) with the start point [2.5, 0, π/2]⊤, where the gray line is the
desired trajectory and the other lines are the performance responses. Specifically, the green
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dashed–dotted line, brown line, red dashed line, and blue dotted line denote the results by
applying the NFTSMC, the AFTSMC, the SNFTSMC, and the proposed control scheme,
respectively.

Figure 3. The path-following performance for a desired infinity-shaped trajectory by different
approaches.

It can be observed from Figure 3 that all controllers achieve the desired tracking perfor-
mance. However, the sliding surface by the proposed approach significantly improves the
efficiency of the output response. To be more specific, the tracking errors of the system state
and the cross-track error (XTE) under uncertainty/disturbance conditions are presented in
Figure 4, in which the XTE is defined as the minimum distance of the current position to
the reference trajectory. Here, the proposed controller achieves the best convergence rate at
around 0.4 s with the assistance of both the proposed surface and the HGDO technique.
Although the convergence rate of the proposed controller is only slightly faster in compar-
ison with the AFTSMC, the AFTSMC carries the risk of encountering singularity issues
during the operation process. Thus, the controllers using the proposed sliding surface
with the nonsingular property can be potential candidates for fast finite-time tracking
control. Owing to the merits of the STW algorithm, steady-state tracking performance by
the four controllers is nearly identical with very small errors within negligible chattering.
In addition, Figure 5 displays the control input signals corresponding to the four control
strategies. These results reveal a slight initial overshoot due to the rapid convergence
rate. However, the control methods incorporating the STW algorithm substantially elimi-
nate the chattering phenomenon in the output trajectory. In brief, the proposed controller
outperforms the other strategies, exhibiting the smallest steady-state tracking error. This
outcome confirms the finite-time convergence characteristic of the closed-loop system and
ensures guaranteed global stability, solidifying the superior performance of the proposed
control scheme. Furthermore, the estimation performance of the HGDO is also investigated
and the results indicate a good estimation performance with small errors in a range of
±0.1 rad/s2, as shown in Figure 6. It implies that the estimated values are closely fitted
with the actual uncertainty value, i.e., the lumped uncertainty is successfully estimated by
the HGDO approach. Accordingly, the HGDO technique provides great estimation results
for uncertainties. In order to quantitatively compare the effectiveness of these control
approaches, we consider two performance indices, the integral of the absolute square value
of tracking error (IASE) and control efforts (IASC) [30]. The results in Figure 7 reaffirm
that the effectiveness of the proposed control framework achieves the smallest error values
with the least effort. The proposed control scheme integrated with the STW and HGDO
techniques enables an effective controller design against uncertainties and disturbances.
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Figure 4. Tracking performance of all controllers; (a) the x coordinates and (b) the y coordinates of
the origin; (c) the cross-tracking errors.

Figure 5. System-controlled input signals for all algorithms; (a) left and (b) right actuators.
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Figure 6. Estimation performance of HGDO technique; (a,b) The lumped value and the estimated
value of uncertainty and disturbance terms in left and right actuators, respectively; (c,d) Its estimation
errors.

Figure 7. Performance indices involving the integral of absolute squares (IAS); (a) tracking error; (b)
the control input.

5. Conclusions

In this study, the proposed SNFTSM-based control scheme that integrates the STW
algorithm and the HGDO technique was applied to the AGV system to exhibit its outstand-
ing features. According to the obtained results and comparisons, the main contributions
of this paper are as follows: (1) converges to the equilibrium point of the sliding phase in
finite time, (2) mitigates chattering phenomenon in the trajectory, (3) successfully estimates
the uncertainties and external disturbances, and (4) eliminates the singularity in the sliding
manifold. Moreover, the system stability with the designed controller is guaranteed by the
Lyapunov theory, which is validated through numerical simulations. Since the proposed
approach has been described with generality, many modifiable variables may seem compli-
cated to follow. However, in fact, the sliding surface design could be simplified for specific
systems.
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AGV Autonomous Ground Vehicle
ANFTSMC Adaptive Nonsingular Fast Terminal Sliding Mode Control
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FLS Fuzzy Logic Systems
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FTSMC Fast Terminal Sliding Mode Control
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NFTSMC Nonsingular Fast Terminal Sliding Mode Control
SMC Sliding Mode Control
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SNFTSM Self-tuning Nonsingular Fast Terminal Sliding Manifold
TSMC Terminal Sliding Mode Control

Appendix A. Mathematical Model

Based on the Lagrange approach [29,32], the system state is q =
[
x y θ ϕR ϕL

]⊤
with the position x, y, orientation θ, and the angular velocities ϕR, ϕL of the left and right
wheels, respectively, and the matrices in the motion equations of mechanical systems in (1)
are given as follows:

M(q) =


m 0 −md sin θ 0 0
0 m md cos θ 0 0

−md sin θ md cos θ I 0 0
0 0 0 0 0
0 0 0 0 Iw

,

V(q, q̇) =


0 −mdθ̇ cos θ 0 0 0
0 −mdθ̇ sin θ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, B(q) =


0 0
0 0
0 0
1 0
0 1

,

Λ(q) =

− sin θ cos θ 0 0 0
cos θ sin θ L −R 0
cos θ sin θ −L 0 −R

.

(A1)
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