
Article https://doi.org/10.1038/s41467-024-47759-7

Stabilizing persistent currents in an
atomtronic Josephson junction necklace

Luca Pezzè 1,2,3,8 , Klejdja Xhani 1,2,3,8, Cyprien Daix 2,4,8, Nicola Grani1,2,4,
Beatrice Donelli 1,3,5, Francesco Scazza 1,2,6, Diego Hernandez-Rajkov1,2,
Woo Jin Kwon 7, Giulia Del Pace 2,4 & Giacomo Roati1,2

Arrays of Josephson junctions are at the forefront of research on quantum
circuitry for quantum computing, simulation, and metrology. They provide a
testing bed for exploring a variety of fundamental physical effects where
macroscopic phase coherence, nonlinearities, and dissipative mechanisms
compete. Here we realize finite-circulation states in an atomtronic Josephson
junction necklace, consisting of a tunable array of tunneling links in a ring-
shaped superfluid. We study the stability diagram of the atomic flow by tuning
both the circulation and the number of junctions. We predict theoretically and
demonstrate experimentally that the atomic circuit withstands higher circula-
tions (corresponding to higher critical currents) by increasing the number of
Josephson links. The increased stability contrasts with the trend of the super-
fluid fraction – quantified by Leggett’s criterion –which instead decreases with
the number of junctions and the corresponding density depletion. Our results
demonstrate atomic superfluids in mesoscopic structured ring potentials as
excellent candidates for atomtronics applications, with prospects towards the
observation of non-trivial macroscopic superpositions of current states.

Josephson junction arrays are pivotal and versatile elements that hold
promise to turn quantum mechanics into emerging computing, sen-
sing, and simulation technologies1–6. By harnessing the dissipationless
non-linearity of single Josephson junctions, combined with strong
collective effects, they show intriguing synchronization7–10 and
interference11–13 phenomena. Furthermore, they serve as experimental
tools to investigate the phase coherence and order parameters in high-
Tc superconductors14,15.

An array of junctions in a multiply-connected geometry forms a
Josephson junction necklace (JJN). In this configuration, the Josephson
effect is used to control the current of persistent states, implementing
robust dynamical regimes characterized by the competition between
tunneling and interaction energies16. JJNs with one or two junctions
realize commonquantum interferencedevices (SQUIDs)17,18, whichfind

applications in rotation sensing with superfluid gyroscopes19,20 and
magnetic field sensing with superconducting rings17,21. Furthermore,
JJNs are key elements of atomtronic circuits22–25. Ultracold atoms in
toroidal traps with a single junction or a weak link have been explored
for the experimental realization of ultra-stable circulation states26–29,
including the study of various superfluid decay phenomena30–32,
current-phase relations33 and hysteresis34. These experiments have
stimulated several theoretical studies that havemainly focused on the
analysis of different instability phenomena in ring superfluids with
various types of defects and potentials35–43. In addition, double-
junction atomtronic SQUIDs have enabled the observation of differ-
ent regimes of Josephson dynamics44, resistive flow45 and quantum
interference of currents46. Interestingly, as conjectured by Feynman47,
further intriguing quantum coherence effects can arise—due to the
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stiffness of the superfluid phase—in ring systems hosting arrays of
multiple junctions. However, despite advancements both in manu-
facturing mesoscopic nanostructured multi-link circuits48–52 and in
engineering atomic trappingpotentials24,53–55, the realization of tunable
JJNs with arbitrary number of junctions remains technologically and
experimentally challenging, and so far elusive inboth superconducting
and superfluid platforms.

In this work, we investigate supercurrent states in an atomtronic
JJN. We analytically predict the stabilization of persistent currents
against decay by increasing the number of junctions, n. We support
this surprising prediction by numerical simulations and we demon-
strate it experimentally in a bosonic superfluid ring with n up to 16.
Such an effect is a direct consequence of the single-valuedness of the
order parameter, reflecting the macroscopic phase coherence of the
superfluid state. Increasing the number of Josephson links leads to a
decrease of the superfluid speed across each junction and to the cor-
responding increase of the global maximum (critical) current in the
ring. Furthermore, the density depletion associated to an increasing n
determines a decreaseof the superfluid fraction according to Leggett’s
formulation56,57 that, however, does not result in a decrease of the
critical current. The full control of our atomtronic circuit opens
exciting prospects toward the realization of non-trivial quantum
superpositions of persistent currents58–62.

Results
Critical current in a Josephson junction necklace
A steady superfluid state63 can be described by a collective wave-
function ψ(r) = ∣ψ(r)∣eiϕ(r). The phase ϕ(r) is related to the superfluid
speedby υðrÞ= _

m∇ϕðrÞ, wherem is theparticlemass andℏ the reduced
Planck constant. To ensure a single-valued wavefunction, the integral
of∇ϕ(r) calculated around any arbitrary closed path C must be a
multiple of 2π:

m
_

I
C
dr � υðrÞ=2πw, ð1Þ

where the integer (winding) number w is a topological invariant. In a
multiply-connected geometry (e.g., in a toroidal superfluid), Eq. (1)
defines a series of quantized persistent-current states labeled byw64,65.
Although the ground state isw =0, metastable finite-circulation states
(w ≠0) can be generated, as first demonstrated with liquid helium66,67

and more recently with ultracold atomic gases26,27,29,68–70.
In the following, we first illustrate the key ideas of thismanuscript

by studying the stationary states of the one-dimensional (1D) JJN. It
consists of a ring of radius R with n equivalent junctions modeled as
narrow Gaussian potential barriers and rotating with angular velocity
Ω. In the rotating frame, the current per particle is given by

J =ρð‘Þ½υð‘Þ �ΩR�, ð2Þ

where ℓ =Rθ is the coordinate along the ring, θ∈ [0, 2π] is the azi-
muthal angle and ρ(ℓ) is the superfluid density. For stationary states,
we have dJ/dℓ =0 (continuity equation), which implies that J is not only
time-independent, but also spatially-constant (seeMethods). As shown
in Fig. 1a, b, Eq. (2) implies the interplay between density and speed: a
dip of ρ(θ) = ρ(ℓ)R [blue line, with ρ(θ) normalized to 1 and
dimensionless], in correspondence with each barrier, is compensated
by a local increase of υðθÞ � υð‘Þ= _

mR
dϕðθÞ
dθ [orange line]. Here, ρ(θ) and

υ(θ) are calculated from the 1D Gross-Pitaevskii equation (GPE, see
Methods). Comparingpanels (a) and (b) of Fig. 1, obtained for the same
value of the circulation w and for different number of junctions, n = 1
and n = 6, respectively, we observe that the maximum superfluid
speed, υmax, drops by increasing n. This is a consequence of the
topological invariance expressed by Eq. (1). In fact, let us consider a JJN
with n equivalent junctions and write υ(θ) = υbulk + υn−peaks(θ), where
υbulk is the bulk speed, given by the minimum velocity along the ring
and υn−peaks(θ) describes thenpeaksof the superfluid speed, see Fig. 1a,
b. Replacing this expression for υ(θ) into Eq. (1), we find

υbulk +
1
2π

Z 2π

0
dθ υn�peaksðθÞ=

_w
mR

: ð3Þ

The bulk contribution in Eq. (3) is expected to change only slightly
when adding sufficiently-narrow junctions to the JJN [see the dotted
black line in Fig. 1c]. On the contrary, the second term in Eq. (3) is
proportional to nυmax. Therefore, for a given w, υmax must decrease
roughly as 1/n in order to keep the left-hand side of Eq. (3) constant.
The decrease of υmax is confirmed by the results of GPE simulations
reported in Fig. 1c [solid orange line]. This effect directly implies a
decrease of the phase gain across each junction,
δϕ= mR

n_

R 2π
0 dθ υn�peaksðθÞ, upon increasing n. Using Eqs. (2) and (3),

we find (see Methods for the detailed derivation)

δϕ=
2π ~w
n

1� f ð~w,nÞ
2πρbulkð~w,nÞ

� �
, ð4Þ

where ρbulkð~w,nÞ is the bulk angular density, given by the maximum
value of ρ(θ) along the ring, ~w=w�Ω=ΩR is an effective circulation in
the rotating frame, and ΩR = ℏ/(mR2) is the rotational quantum34.
VaryingΩ allows to address continuous values of ~w.We alsonotice that
f ð~w,nÞ � ð2πÞ2 R dθ=ρðθÞ� ��1

≤ fs, where fs∈ [0, 1] is Leggett’s super-
fluid fraction56,57,71–74. The latter expresses the phase rigidity of the
system, quantified by the kinetic-energy response to a phase twist of
the superfluid order parameter. In particular, f ð~w,nÞ= f s forw = 0 and
in the limit Ω→0 (see Supplementary Information). In Fig. 2a, we plot
δϕ as a function of n, Eq. (4), where the quantities f ð~w,nÞ and
ρbulkð~w,nÞ are calculated from the stationary states of theGPE in the 1D
ring. Symbols refer to different values of ~w. We clearly see that δϕ
decreases with n.

The decrease of δϕ implies that the condition δϕc ≈π/2 – that
determines the maximum (or critical) current Jc in the JJN15,75 – is met
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Fig. 1 | Superfluid speed in a JJN. a, b show the superfluid density ρ (blue line) and
speed υ (orange line) in a 1D JJN, dividedby the valuesρ0 and υ0, respectively, of the
homogeneous ring. The two panels correspond to n = 1 (a) and n = 6 (b) junctions.
c Maximum, υmax (solid orange line), and bulk, υbulk (dotted black line), superfluid
speed as a function of the number of junctions. Results in all panels are obtained
from the stationary states of the 1D GPE with w = 1 and Ω =0.
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for higher values of ~w when increasing n. We find (see Methods)

~Jc =
nf c=4

2π½1� f c=ð2πρcÞ�+nf cL
, ð5Þ

where~Jc = Jc=ΩR is the rescaled critical current, fc and ρc are the values
of f ð~w,nÞ and ρbulkð~w,nÞ obtained for~J =~Jc (with~J = J=ΩR), respectively.
The dimensionless parameter L in Eq. (5) is a small kinetic inductance
associated to the finite width of the junction20,30,76–78. It is responsible
for the deviation of δϕc from π/2, as δϕc =π=2 + 2πL~Jc

20,30,76–78. From
Eq. (5) it is apparent that the critical current is mainly determined by
the competition between n and fc. In Fig. 2b we plot the ~Jc, obtained
from the GPE solutions, as a function of n. Numerical values agree with
Eq. (5) (black dots). Furthermore, small white dots in Fig. 2b show the
current of metastable states in the caseΩ = 0 (~w=w), where~J assumes
only quantized values (see Methods). The inset of Fig. 2b shows the
numerical current-phase relation for n = 1 (green squares) and n = 6
(blue circles): results are well reproduced by
δϕ= sin�1ð~J=~JcÞ+2πL~J20,30,76–78 (dotted line). Figure. 2b and its inset
clearly show that~Jc increaseswith the number of junctions.When~J >~Jc,
the current enters the unstable regime [red regions in Fig. 2a, b],
characterized, dynamically, by the simultaneous emission of n solitons
from the barriers (see refs. 40,41 for a study of the case n = 1).

Although the above discussion is restricted, for illustration sake,
to a stationary 1D ring, the predicted effects are expected to hold
qualitatively also in higher dimensional non-stationary systems in
multiply-connected geometries, due to the general validity of Eq. (1).
To confirm this expectation and mimic the experimental conditions,
we have performed 3D time-dependent GPE simulations (see Meth-
ods). We prepare the ground state in the annular trap, impose a cir-
culationw0, andobserve the dynamicsof the system in the presence of
n junctions. Consistently with the results of Fig. 2, we observe a
decrease with n of both the superfluid speed and the time-averaged
phase gain across each junction (see Supplementary Information). The

results of numerical simulations are schematically summarized as in
Fig. 3a. If the number of junctions is below a critical value nc that
depends on w0, then vortices are emitted symmetrically from each
barrier, causing phase slippage and a decay of the winding number in
time (see Supplementary Information). This vortex emission is the 3D
analogue of the observed simultaneous nucleation of n solitons in 1D
simulations in the unstable regime. If n is increased above nc, then the
emission of vortices is suppressed and the circulation remains con-
stant in time (upon neglecting thermally and quantum activated decay
processes, which are estimated to occur on time scales larger than the
experimental ones, see Supplementary Information). Our simulations
show that a higher stable circulation corresponds to a larger time-
averaged critical current.

Experimental system and persistent current states
We investigate experimentally the predicted increase of current sta-
bility in JJNs by realizing a Bose-Einstein condensate (BEC) of 6Li
molecules ofmassm = 2ma, wherema is themass of a 6Li atom. The gas
is held in an annular trap equipped with a variable number (n ≤ 16) of
static planar junctions. Both the ring-shaped trap and the array of
junctions are produced by the same digital micromirror device (DMD)
illuminated with blue-detuned light to provide a repulsive optical
potential. Using the high resolution of the DMD projection setup, we
create a dark ring-shaped region in the x-y plane delimited by hard
walls whose height is much larger than the chemical potential of the
superfluid (given by μ/h≃ 850Hz in the clean ring), with
Rin = 11.7 ± 0.2μm and Rrout = 20.6 ± 0.2μm being the inner and outer
radius of the annulus. The potential is completed by a tight harmonic
confinement along the vertical z direction, of trapping frequency
ωz = 2π × (383± 2) Hz. The junctions can bemodeled as Gaussian peaks
of initial height V0≃ (1.3 ± 0.2) μ and 1/e2-width σ = (1.2 ± 0.2) ξ, with
ξ ≈0.68μm being the healing length (see Supplementary Information
for details on the barrier characterization). We initially
trap approximately 6.8 × 103 condensed atompairs inside the ringwith
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Fig. 2 | Superfluid phase and critical current in a JJN. a Phase gain δϕ across each
junction as a function of n, Eq. (4), where f ð~w,nÞ and ρbulk are obtained from GPE
calculations in a 1D JJN. Symbols refer to ~w = 1:44 (downward triangles), ~w = 2:15
(squares) and ~w= 3 (upward triangles). These correspond to the maximum values
of ~w, for n = 1, 3 and 5, respectively, for which a stable solution of the GPE can be
found. For larger values of ~w, the system is unstable, with the nucleation of soli-
tons being observed in dynamical GPE simulation. Lines are guides to the eye. In
particular, the solid black line connects maxima of δϕ obtained for different w,
separating the stable (blue) from the unstable (orange) region. The inset shows the
superfluid phase ϕ as a function of the angle θ along the ring, for n = 1 (dotted
green line) and n = 6 (solid blue line).bCritical current as a function of the number

n of junctions. The analytic formula, Eq. (5) (large black dots), reproduces the
numerical calculation of the maximum current ~Jc . Small white dots show the cur-
rent~J calculated forΩ =0 and different values ofw, ranging fromw = 1 (bottom) to
w = 8 (top). Solid and dotted lines are guides to the eye. The orange region cor-
responds to values of the current above~Jc and are thus inaccessible in the system.
Inset:δϕ as a functionof~J calculated for the stationary states of the 1DGPE, forn = 1
(green squares) and n = 6 (blue circles). The dotted lines are the current-phase
relations δϕ= sin�1ð~J=~JcÞ+ 2πL~J76 without free fitting parameters: the kinetic
inductance L is calculated from the relation L= ðδϕc � π=2Þ=ð2π~JcÞ, ~Jc is the
numerical maximum current and δϕc is the corresponding value of the phase gain.
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a shot-to-shot stability around 5%. Due to the finite lifetime of our
molecular BEC, the pair number decreases over the course of the
current decay by at most 20%, causing a decrease of the chemical
potential of the superfluid. Consequently the valueofV0/μ increasesby
up to ~15% depending on the holding time.

We initialize the superfluid ring in a quantized circulation state
with winding number w0∈ {1, 2, 3, 4}. Following the procedure
described in ref. 29, different values ofw0 are obtained on-demand by
shining a DMD-made azimuthal light intensity gradient onto the ring
over a duration tI≪ ℏ/μ, i.e., shorter than the characteristic density
response time,ℏ/μ. In thisway,we imprint a phaseΦ(θ) =U0(θ) × tI/ℏ to
the condensate wavefunction without modifying the atomic density70,
whereU0(θ) is the spin-independent potential exerted by the light field
on the atomic states that varies linearly with θ29. After the imprinting,
we wait 300ms to let the cloud reach equilibrium, allowing the pos-
sible density excitations following the imprinting procedure to damp
out43. We then progressively ramp up the n Gaussian junctions over
approximately 1ms (corresponding to ≈ 6 ℏ/μ). The barrier ramp-up
time is adjusted to be slow with respect to the density response of the
superfluid and fast relative to the typical current decay.

Stability phase diagram
To measure the winding w in the ring, we exploit an interferometric
probe29,33,79: weequip the atomic superfluidwith a central disk acting as
a phase reference [see panels (i) and (iv) in Fig. 3b] and measure the
relative phase between the disk and the ring from the interference
pattern arising after a short time-of-flight. The number of spiral arms in
the interferogram provides access to the value of the circulation
(winding number) at time t,w(t). The different panels of Fig. 3b display
typical examples of experimental images. In panels (i) and (iv) we show
the in-situ atomic density profile at t =0. The atomic density (averaged
over 10 experimental images) is characterized by a homogeneous bulk
both in the azimuthal and radial directions. The n = 2 (i) and n = 4 (iv)
junctions are clearly visible and are associated to local dips in the
density, similarly as in Fig. 1 and Fig. 3a. In panels (ii) and (iii) we show
examples of spiral interference patterns emerging for an unstable
dynamics, namely w(t) decreasing in time below w0 (here, w0 = 2 and
n = 2): in (ii) t = 1 ms and w(t) = 2, while in (iii) t = 7 ms and w(t) = 1. In
particular, panel (iii) shows the presence of a vortex identified as a
localized low-density defect and marked by the orange arrow. The
vortex emission signals the decrease of w by one quantum. In panels

(v) and (vi) we show instead the interferograms for stable dynamics,
namely w(t) =w0 (here, w0 = 2 and n = 4). A non-circular, polygonal
interference pattern is visible both at short [(v), t = 1ms] and at long
[(vi), t = 20ms] times due to the sharp phase gain at the junctions.

By averaging the winding number over approximately 15 experi-
mental realizations under the same conditions, we extract the evolu-
tion of the mean circulation hwðtÞi for various n. We study the
dynamics up to 250 ms, which is sufficient to observe steady current
states at long-times while still limiting particle losses. The measured
hwðtÞi is shown in Fig. 4a for w0 = 2. We fit each curve with an expo-
nential decay given by hwðtÞi =wf +Δw expð�ΓtÞ. The fitting para-
meterswf,Δw and Γ allowus to characterize themean supercurrent. As
hwðtÞi is obtained from statistical averaging, the figure shows that the
number of realizations w(t) that remain stable in time increases with
the number of junctions. In particular, the number of stable realiza-
tions increases substantially when changing the number of junctions
from n = 2 (red diamonds) to n = 4 (yellow squares). For n = 10 (blue
circles), all realizations are stable: this demonstrates the experimental
capability to create stable finite-circulation states in a JJN.

Figure 4b summarizes the results obtained for differentw0 and n,
in the form of a stability phase diagram. In particular, we plot the
quantity ~Γ=Δw Γ=max

n
ðΔw ΓÞ, where each horizontal line of the phase

diagram is normalized to itsmaximumvalue for fixedw0. This quantity
combines information on the difference between the initial and the
final winding numbers,Δw, namely howmuch the currents decay, and
on the timescale over which this decay takes place, Γ. Values of ~Γ≈ 1
(red regions) are obtained when most of the realizations w(t) rapidly
decay towards values of the circulation lower than the initialw0.On the
contrary, small values of ~Γ≈0 (blue regions) are obtained when most
of the realizations are stable over time, namely w(t) =w0. The phase
diagram clearly shows that, on average, the system supports a higher
number of stable realizationswhen increasing the number of junctions
(see further details in Supplementary Information). The right axis of
Fig. 4b reports the current of states with circulation w0 in the clean
ring. By the choice of normalization, ~Γ shows a sharp transition from
~Γ≈ 1 to ~Γ≈0 when increasing n. The dashed white line in Fig. 4b
denotes the critical winding number wc(n) and the corresponding
current (right axes) as a function of n, as computed numerically from
3D GPE simulations. The numerical critical curve wc(n) is obtained for
V0/μ = 1.8 and match the experimental phase diagram well. The need
for a larger V0/μ in numerical simulations with respect to the one

Fig. 3 | Sketch of the experiment and observables. a After preparing an initial
persistent current state with circulation w0, the n junctions are ramped up (see
text). The 3D density plots are isosurfaces obtained from 3D GPE numerical
simulations of the experimental set-up. Ifn is below a critical valuencdependingon
w0, the initial current is dissipated via the nucleation of vortices (here n = 2 and
vortices are highlighted by orange cycling arrows in the upper right plot). Con-
versely, if n≥nc (here n = 4), the system remains stable with w =w0 (lower right

plot). b Examples of experimental in-situ images and interferograms obtained for
w0 = 2 and for the same number of junctions n as in (a): n = 2 (unstable config-
uration), at t =0 (i), t = 1ms (ii) and t = 7ms (iii); and n = 4 (stable configuration) for
t =0 ms (iv), t = 1 ms (v) and t = 20 ms (vi). In the case (iii), the circulation has
decayed (w(t) <w0) and the vortex emission is identified by the single spiral arm
and the presence of a localized region of low density, i.e., a vortex.
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estimated in the experiment, is consistent with the finite lifetime of the
sample (which implies that V0/μ increases during the dynamics) and
the finite resolution of the DMD potential, which makes the barriers
not perfectly identical (see Supplementary Information). Anyway, we
note that the only effect of a change of V0/μ on the critical linewc(n) is
to provide a linear shift, meaning that the particular choice of V0/μ
does not affect its trend, which well reproduce the experimental
findings.

Given that ~JcðnÞ∼n f c from Eq. (5), a significant decrease of the
superfluid fraction fs≥ fc would overshadow the stabilization mechan-
ism arising from increasing n. For this reason, in Fig. 4c, we study the
dependenceof fson n and indeed find amildly decreasing trend, which
is insufficient to disrupt the enhanced stability of currents for large n.
According to a variational calculation by Leggett56,57, the superfluid
fraction fs can be bounded experimentally from the in-situ density
profile ∣ψ(r)∣2 72–74:

Z Z
dz dr r

1
d2

R
cell

dθ
jψðrÞj2

≤ f s ≤
1

d2

Z
cell

dθRR
dz dr rjψðrÞj2

 !�1

: ð6Þ

The bounds in Eq. (6) are computed by using the ground state of the
3DGPE (seeMethods and Supplementary Information).We restrict the
azimuthal angle θ over a unit cell of size d = 2π/n and use the nor-
malization ∬ dz dr r ∫celldθ ∣ψ(r)∣2 = 156,57,71. In Fig. 4 we plot the upper
(dashed red line) and lower (dashed blue line) bounds in Eq. (6). They
are very close to each other as our system is approximately separable
in the transverse spatial directions72 and they coincide in 1D, where
f s = limw=0,Ω!0 f ð~w,nÞ (see Supplementary Information). Increasing n
enhances the size of the density dip relative to the unit cell length and
thus decreases both the lower and upper limits in Eq. (6), see Fig. 4c.
Experimentally, for each value of n, we compute Leggett’s upper
bound on 10 different images of the experimental density. We com-
pute the integral on the right-hand side of Eq. (6) by summing over all
pixels inside an annular region with inner and outer radii rcut1 > Rin and
rcut2 < Rout respectively. We have numerically verified that the values of
the bounds do not depend on the exact size of this region. The
corresponding mean values and standard deviations are shown as
circles in Fig. 4a. The deviations from fs = 1 in the clean ring (n =0) are
mainly due to noise in the experimental images, as well as the finite

pixel size of our imaging sensor. Experimental results are well
reproduced when taking into account the finite resolution of the
imaging system (solid blue and red lines) and show a slight decrease of
fs with n.

Discussion
Our work showcases the first experimental observation of ring
supercurrents in periodic arrays of Josephson junctions. Such stable
currents can be experimentally observed only for a sufficiently large
number of links, as predicted by our theoretical model. In particular,
our work shows that the maximum current flowing across the atom-
tronic circuit is due to a cooperative mechanism involving all the
junctions rather than only to the properties of the single Josephson
link. We expect the mechanism demonstrated in this manuscript to
apply to any superfluids and superconductors as it solely depends on
the single valuedness of the wavefunction in a multiply-connected
topology.

Therefore, a natural extension of our work will be to investigate
whether the same effect stabilizes supercurrents in other annular
systems, such as atomic Fermi superfluids28,29 and supersolids80. In the
former case, the condensate fraction differs from unity even at T =081

and additional dissipative effects, such as Cooper pair-breaking82,83

may compete with the stabilization mechanism. In the latter, intrinsic
density modulations realize an array of self-induced Josephson junc-
tions – as recently demonstrated in ref. 74 for an elongated atomic
system – which can be controlled by tuning the confinement
parameters.

Finally, the exquisite controllability offeredby our platformopens
the way toward realizing exotic quantum superposition of superflow
states58–62 with possible implications in both atomtronic and quantum
technologies.

Methods
Derivation of Eqs. (4) and 5
Using Eq. (2) with the dimensionless ρ(θ) = ρ(ℓ)R, we obtain
υbulk = JR/ρbulk +ΩR. We thus rewrite Eq. (3) as

2π~J
ρbulk

+nδϕ= 2π ~w: ð7Þ

Fig. 4 | Stability phase diagram of an atomtronic JJN. a Mean circulation as a
function of time, for w0 = 2 and different number of barriers, n (symbols), with
averages and error bars obtained from 15 repeated measurements for each point.
The dashed lines are exponential fits, hwðtÞi=wf +Δw expð�ΓtÞ. b Effective decay
rate ~Γ / Δw Γ (colormap), extracted from the exponential fits as in (a) as a function
of w0 and n. ~Γ quantifies the stability of an initial finite-circulation state w0. The
dashed white line is the critical circulation wc(n) as a function of n, obtained from

3D GPE simulations. The right axis shows the rescaled current ~J of w0 states in the
clean ring. c Upper (dashed red line) and lower (dashed blue line) bounds to the
superfluid fraction fs, Eq. (6), as a function of the number of junctions. Bounds are
obtained from the ground statedensity of the numerical 3DGPE. The solid lines are
the bounds evaluated by including the finite resolution of the experimental ima-
ging system. Circles are the upper bound evaluated using experimental in-situ
images and averaged over 10 realizations.
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Inserting Eq. (2) into Eq. (1) gives ~J as a function of ~w and n:

~J =
~wf ð~w,nÞ

2π
: ð8Þ

Finally, by replacing Eq. (8) into Eq. (7), we obtain Eq. (4).
To obtain Eq. (5), we notice that Eq. (4) is valid for every value of

δϕ: in particular for the value δϕ = δϕc achieved for~J =~Jc. Furthermore,
δϕc and ~Jc are related as δϕc =π=2+ 2πL~Jc, which follows from the
current-phase relation δϕ= sin�1ð~J=~JcÞ+2πL~J20,30,76–78. Replacing this
value into Eq. (4) and using Eq. (8), we find Eq. (5). The above current-
phase relation models a Josephson junction with a finite width as a
linear inductance in series with a purely sinusoidal one. Following
ref. 76, we write δϕ = δϕ1 + δϕ2, where δϕ1 is the phase drop across the
sinusoidal inductance, namely~J =~Jc sin δϕ1, while δϕ2 is thephasedrop
across the linear effective inductance, namely ~J = δϕ2=ð2πLÞ.

Numerical methods
1D GPE. We consider the 1D GPE equation

i_
∂
∂t

ψð‘, tÞ= � _2

2m
∂2

∂‘2
+V ð‘Þ+ g1Djψð‘, tÞj2 + i_ΩR

∂
∂‘

" #
ψð‘, tÞ, ð9Þ

where ℓ =Rθ is the spatial coordinate along the ring,m is the molecule
mass, g1D is an effective interaction parameter,
V ðθÞ=V0

Pn
j = 1 exp½�2ðθ� θjÞ2=σ2� is the necklace potential, given by

the sum of Gaussian barriers centered at θj = 2πj/n and with amplitude
V0. We write ψð‘, tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðθ, tÞ

p
eiϕðθ,tÞ=

ffiffiffi
R

p
and search for stationary

solutions of Eq. (9), namely ∂ρðθ, tÞ
∂t =0 and ∂ϕðθ, tÞ

∂t = � μ
_, where μ is the

chemical potential. We obtain two coupled equations, corresponding
to the real and imaginary part of Eq. (9), see e.g., ref. 84. The equation
for the imaginary part is the continuity equation ∂JðθÞ

∂θ =0. The equation
for the real part writes as

μ
ffiffiffiffiffiffiffiffiffi
ρðθÞ

p
= � _ΩR

2
∂2

∂θ2
+
_ΩR

2

~J
2

ρðθÞ2
+V ðθÞ+ g

R
ρðθÞ

 ! ffiffiffiffiffiffiffiffiffi
ρðθÞ

p
, ð10Þ

where we have used Eq. (2) to express the superfluid speed in terms of
thecurrent.Numerically, for agivenvalueof ~w,we solve the twocoupled
Eqs. (8) and (10) iteratively. The free parameters g, σ and ~V0 are chosen
in order to match the experimental conditions: σ/ξ= 1.2, V0/μ0 = 1.4 and
ξ/R =0.056 (with R= 12μm being approximately the inner radius of the
experimental system),whereμ0 is the chemical potential obtained in the
homogeneous case (without barriers) and for w=Ω=0. Results of GPE
simulations of the 1D JJN are reported in Figs. 1 and 2.

3D GPE. In order to better capture the experimental procedure and
the dynamics of the system, in 3D we solve numerically the time-
dependent GPE for static barriers,

i_
∂ψðr, tÞ

∂t
= � _2

2m
∇2ψðr, tÞ+V ðrÞψðr, tÞ+ gjψðr, tÞj2ψðr, tÞ, ð11Þ

with g = 4πℏ2a/m the interaction strength, a = 1010 a0 the s-wave
scattering length and a0 the Bohr radius. The external trapping
potential is V(r) = Vharm(r) +Vring(r) +Vbarr(r). Here,
VharmðrÞ=mðω2

?r
2 +ω2

z z
2Þ=2 is an harmonic confinement with

{ω⊥, ωz} = 2π × {2.5 , 396} Hz. The hard-wall potential creating the ring
confinement in the x-y plane is given by

V ringðrÞ=Vr tanh
r � Rout

d

� �
+ 1

� �
+Vr tanh

Rin � r
d

� �
+ 1

� �
: ð12Þ

with Rin = 10.09μm and Rout = 21.82μm being the inner and outer
radius, respectively. The parameter d = 1.1μm characterizes the

stiffness of the hard walls, fixed such that the numerical density pro-
files match the in-situ experimental ones. We take Vr larger than the
chemical potential μ such that the density goes to zero at the
boundary. The n barriers are modeled as identical Gaussian peaks of
trapping potential

Vbarr =V0

Xn=2
i = 1

exp �2ðx cosði2π=nÞ+ y sinði2π=nÞÞ2=σ2
h i

: ð13Þ

with constant width σ =0.8μm. Notice that, similarly to the 1D case,
taking ψ(r, t) = ∣ψ(r, t)∣eiϕ(r, t), Eq. (11) can be split in two coupled equa-
tions, one for its real and one for its imaginary part84. The continuity
equation is ∂

∂t jψðr, tÞj2 +∇ � jðr, tÞ=0, where jðr, tÞ= �
i_
2m ψ*ðr, tÞ∇ψðr, tÞ � ψðr, tÞ∇ψ*ðr, tÞ� �

is the current density. The current
per particle, J, is obtained by integrating j(r, t) along a surface and it
has thus the dimension of a frequency.

Experimental methods
Characterization of the tunneling barriers. Due to the finite resolu-
tion of the DMD-projecting setup, the barriers of experimental JJNs are
not identical. We characterize the properties of each barrier in the
different configurations at variousnby acquiring an imageof theDMD-
created light profile by means of a secondary camera, and calibrating
the optical potential via the equation of state of a BEC in a well char-
acterized 3D harmonic trap81. Then, we extract the height and 1/e2-
width by fitting the radially-averaged profile of each barrier with a
Gaussian. From this set of data, we extract the mean values and stan-
dard deviation of barrier height V0≃ (1.3 ± 0.2)μ and width
σ = (1.2 ± 0.2) ξ. Error bars denote the standard deviation of the para-
meters over the set of barriers. Even though the barriers are not strictly
identical, the obtained results show that it is possible to create similar
barriers with fluctuations on V0 and σ that are only a fraction of the
chemical potential and healing length, respectively.

Imaging resolution. To compare numerical and experimental data in
Fig. 4c, we have taken into account the finite spatial resolution of the
imaging system, characterized by a Point Spread Function (PSF) of full-
witdh-half-maximum FWHM=0.83μm81. To estimate the theoretical
curves of Fig. 4c,wefirst integrate the 3Dnumerical densities along the
z direction, Then, we account for the finite experimental resolution by
convolving the integrated numerical densities with a two-dimensional
Gaussianwith a FWHMmatching the experimental PSF. Thisprocedure
leads to a decrease in the resolution of the density modulation, which
causes the estimated superfluid fraction to increase and yields results
in good agreement with experimentally extracted values, see Fig. 4c.

Data availability
All the data supporting the findings of this study can be obtained from
the corresponding authors on request.
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