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This study proposes a data-driven method for predicting the probabilistic response of cable-stayed bridges. The proposed method
is used to construct an optimal prediction model based on a data-driven machine-learning method. In addition, the accuracy and
efficiency of the prediction model are improved by considering the correlation coefficients between the input sensor data and the
output of the target response. The proposed method is comprised of two steps: the selection of meaningful features and the
construction of a probabilistic prediction model employing Gaussian process regression. The proposed method is applied to an in-
service cable-stayed bridge in the Republic of Korea using actual measurement data from various sensors. For comparison
purposes, two parametric studies are performed, and the effects of the proposed feature-selection procedure are investigated based
on the normalized correlation coefficients. Consequently, the proposed feature-selection method is proven to increase the accuracy
and efficiency of the prediction.

1. Introduction

Structural health monitoring (SHM) can be used to evaluate
structural conditions in real time and has been applied to
monitor the structural safety of bridges based on measure-
ment data [1]. For example, Liu et al. [2] assessed the struc-
tural performance of a bridge at the system level using SHM.
Agdas et al. [3] attempted to identify structural damage
through visual inspection and provided a decision-making
framework based on SHM. To improve the real-time perfor-
mance of such tasks, previous studies developed smart sensor
technologies [4, 5, 6]. These studies have demonstrated that
SHM provided an efficient method for the long-term moni-
toring of structural characteristics, such as the force, strain,
displacement, and vibration of a bridge.

As cable bridges (e.g., cable-stayed and suspension bridges)
are considered crucial civil infrastructures, SHM techniques

have been applied to monitor their structural conditions and
identify abnormal responses in real-time using measurement
data obtained from various sensors. Jang et al. [4] presented a
wireless smart sensor network deployed in an actual cable-
stayed bridge and evaluated its performance using several
methods. Haji Agha Mohammad Zarbaf et al. [7] proposed a
new methodology based on a genetic algorithm and particle
swarm optimization to estimate cable tension forces, which are
critical structural components that need to be monitored for a
cable-stayed bridge.

Recent studies have focused on identifying structural
damage and anomalies in cable-stayed bridges using mea-
surement data. Anomaly detection involves identifying pat-
terns in data that deviate from expected behavior [8].
To assess structural conditions based on measurement
data, it is important to set accurate thresholds for detecting
abnormal or unusual behaviors [9]. Huynh et al. [10]
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conducted the structural identification for a cable-stayed
bridge under a typhoon using the measurement data. Addi-
tionally, structural identification of the bridge was conducted
at various wind speeds to assess the changes in the bridge’s
dynamic characteristics caused by the typhoon. Mehrabi and
Farhangdoust [11] assessed the cable responses using a laser-
based vibration technique for health monitoring of cable-
supported structures. Similarly, several researchers conducted
the structural identification of cable-supported structures
using the measurement data from various sensors, to detect
abnormal or unusual responses [12, 13, 14, 15].

Therefore, prediction models related to artificial intelli-
gence (AI) techniques have been employed to set these
thresholds and detect anomalies based on measurement
data. For example, Lee et al. [16] presented a methodology
for monitoring structural responses through a pattern anal-
ysis of measurement data and employed an autoregression
model for predicting structural responses. This method
detected anomalous responses when specific measurement
data deviated from the predicted pattern, serving as a thresh-
old for anomaly detection. Furthermore, Pamuncak et al. [17]
proposed a method for predicting the cable forces of cable-
stayed bridges using temperature data as input, employing a
convolutional neural network (CNN), which is a deep learn-
ing technique. By using a prediction model based on data-
driven approaches, the prediction of structural response was
utilized to detect damage or abnormal responses in cable-
stayed bridges [17, 18]. However, most studies have utilized
deterministic machine-learning models for the response pre-
diction of cable-stayed bridges and suspension bridges
[18, 19, 20].

When constructing machine-learning models for pre-
dicting responses, it is often necessary to consider uncer-
tainty related to measurement data. It can be challenging
to reduce the uncertainty of the measurement data despite
the increasing amount of available data [21]. To address this
issue, several researchers have utilized probabilistic methods
to consider the uncertainty of measurement data. For exam-
ple, Lee et al. [22] proposed a new probabilistic method
based on Gaussian process regression (GPR) that provided
both the prediction interval and predictive mean. In addi-
tion, the method was used for decision-making regarding
bridge maintenance by utilizing the results of the predictive
interval and prediction mean obtained through the GPR.
Wang et al. [23] employed GPR to predict the strain of a
suspension bridge during typhoon events. Previous studies
have proposed methods for probabilistic response predic-
tion, considering the influence of environmental factors
(e.g., temperature and wind) on the responses of structures.
However, these studies did not include a process for select-
ing environmental data that exhibited a high correlation
with the predicted responses of structures to reduce the
complexity of the model. Using all available data, including
less-correlated data, to construct a predictive model leads
to reduced prediction accuracy and increased computa-
tional time.

Cable-stayed bridges typically have a relatively large
number of sensors that measure various physical quantities

related to the environmental and structural responses. How-
ever, the prediction becomes inaccurate and ineffective if a
prediction model is constructed on the basis of a dataset that
includes irrelevant and redundant data. High-dimensional
data analysis is required, which subsequently increases the
complexity of the prediction model. According to Saunders
et al. [24], irrelevant and redundant data can deceive the
algorithm, thus increasing model error. Similarly, Cai et al.
[25] proposed enhancing the quality of measurement data.
This can increase the accuracy of a machine-learning model
and reduce the required learning time by reducing the
dimensionality of the data [26]. Blum and Langley [27]
described several important definitions of relevance and pro-
posed a feature-selection algorithm for selecting relevant fea-
tures. Moreover, they characterized feature-selectionmethods
as embedded, filter, and wrapper approaches [28]. Although
these approaches have the advantage of selecting optimal fea-
ture subsets, they have limitations related to selecting subop-
timal feature subsets, large time costs, and the selection of
machine-learning models [29, 30]. Thus, subsequent studies
have proposed hybrid models that combined the filter, wrap-
per, and embedded approaches to overcome these disadvan-
tages [31, 32, 33, 34, 35].

For this reason, when performing response prediction for
cable-stayed bridges using various measurement data, it should
consider addressing the model complexity due to high-
dimensional data. Fang et al. [36] suggested surrogate models
based on support vector regression, artificial neural network,
and GPR for the response prediction of a cable-stayed bridge
and utilized a machine-learning model to consider the correla-
tion between the input and target (i.e., structural response) data.
In the study, the proposed method improved the accuracy and
efficiency of machine-learning models for response prediction.
However, this surrogate model required a complex process to
calculate the optimal prediction using variousmachine-learning
models. Therefore, this study proposes a method for feature
selection to improve the accuracy and efficiency of prediction
models using a hybrid approach. In addition, the proposed
method integrates filter and wrapper approaches and enables
the construction of an optimal predictionmodel based on a new
index. This new index considers the correlation between input
(i.e., environmental data) and output (i.e., target response) data
based on the normalized correlation coefficient for the selection
of relevant feature subsets.

2. Proposed Method

To predict the cable responses of a cable-stayed bridge effec-
tively, it is important to construct an optimal prediction
model with improved accuracy and efficiency while consid-
ering the correlation among multiple measurement data. The
proposed method comprises two steps: feature selection and
construction of the prediction model. In the first step, only
the data related to the bridge response to be predicted are
selected from the large amount of input data obtained from
the various sensors of a cable-stayed bridge. In the second
step, the selected data are applied to GPR to construct a
response prediction model.
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In the feature-selection step, only the data related to the
predicted target information are systematically selected based
on the correlation between the input and output datasets. For
the task, this study introduces a normalized index based on the
Pearson correlation coefficient (hereafter referred to as the cor-
relation coefficient) and sets the criteria for feature selection.
This index denotes the absolute value of the correlation coeffi-
cient between the input and output data. Based on this, feature
selection can be performed according to equivalent criteria for
datasets obtained from various sensors.When relevant datasets
are selected, a probabilistic prediction model is constructed
using GPR. For new input data, the constructed GPR model
provides not only the predictive mean but also the standard
deviation. In addition, the predictive model analysis can be
repeated to determine the optimal criterion that resumes the
process of feature selection. These two steps are described in
Sections 2.1 and 2.2 along with their theoretical backgrounds.

2.1. Feature Selection Based on Z-Index. A cable-stayed
bridge is often equipped with various types of sensors for
monitoring its structural health. In this study, measurement
datasets from various sensors are utilized to predict the ten-
sion forces of cables. A cable-stayed bridge is a system com-
prised of several structural components; thus, its sensor
datasets need to be correlated at a certain level. When pre-
dicting the response of a specific structural component, the
prediction accuracy can be increased by considering the cor-
related sensor data. However, the data from other sensorsmay
have a low correlation with the target structural response.
Nonetheless, the prediction accuracy can be reduced and
the computational time increased if all available data, includ-
ing less-correlated data, are applied to construct a predictive
model. Therefore, it is critical to select the input data related
to the target structural response from among various mea-
surement datasets.

Twomethods are often adopted to improve the accuracy of
predictive models: feature selection and feature extraction [37].
Feature selection is the process of selecting the best feature
among all features, that is, the one that satisfies various criteria
defining relevance. Thus, feature selection focuses on the selec-
tion of relevant features from existing data. In feature extrac-
tion, new features are created by combining existing features.
Feature extraction focuses on making features of the original
data useful.

Saunders et al. [24] suggested an approach for feature
selection based on the reduced dimensionality of data, aiming
at the computational efficiency and accuracy of a machine-
learning model. In the research, feature selection was applied
to simplify the construction of the model, and relevant fea-
tures were selected. In other words, the approach increased
accuracy in a model with fewer data than the original data
points. In addition, reducing the complexity of the learning
results enhanced the understanding of the underlying process.

Several researchers showed that feature selection enabled
the effective construction of a regression model for accurate
prediction [27, 28, 29]. However, feature selection often
requires a selection criterion. As it was found that, for a

target cable-stayed bridge, the temperature and wind speed
(i.e., input data) were correlated to the cable tension force
(i.e., output data), this study introduces correlation coeffi-
cients between the input and output data for feature selection.
The correlation coefficient of a dataset is a measure of the
linear correlation between two sets of data. It has a value
between −1 and 1, with the absolute value indicating that
the linear equation completely describes the relationship
between the input and output (i.e., with all data points lying
on a line). In contrast, there is no linear dependency between
the variables when the correlation coefficient is zero. There-
fore, the absolute value of the correlation coefficient can be
introduced as a criterion to determine relevant features. This
study selects the input data with the criterion being the abso-
lute value of the correlation coefficient between the input and
output data. Subsequently, the selected input data are used to
establish a machine-learning model by employing GPR to
predict the structural response.

However, input features may not be selected properly
when the correlation coefficients with inputs vary by output.
Figure 1 shows an example of the correlation coefficient
matrix for the eight input and five output datasets. If feature
selection is performed for relevant data based on the corre-
lation coefficient, it involves setting different threshold
values for the selection of relevant input data related to
each output datum. For example, when y1, which is generally
highly correlated with the input data, is designated with a
threshold value of 0.5, the data of x3, x5, x6, and x8, which
have an absolute value of the correlation coefficient over the
threshold value, are selected as features. On the other hand,
when y2, which is generally less correlated with the input
data, is designated with the same threshold value, no input
data can be selected. To select a similar number of datasets
for y2, a smaller threshold value needs to be set. For example,
when y2 is designated with a threshold value of 0.2, the data
of x5, x6, and x7 are selected as input features. In other words,
if the same threshold value is designated to predict all output
data, this may result in an excessive or insufficient amount of
input data, which may decrease prediction accuracy and effi-
ciency. Therefore, it is difficult to select an appropriate num-
ber of input data due to the inconsistent level of correlation
coefficients between input and output data.

To resolve this issue, in this study, normalizing the absolute
values of the correlation coefficients and setting a threshold value
is proposed. For normalization, the Z-score can be adopted
[38, 39, 40, 41]. Z-score normalization facilitates the identifica-
tion of the relative importance of the correlation to the overall
correlation. The index transformed into a relative correlation
between the input and output data is denoted as the Z-index,
which indicates the normalized importance of each correlation
coefficient between the input and output data in the entire data-
set. Feature selection is used to configure the criteria for selecting
the relevant input data using the Z-index as follows:

Zj ¼
ρi;j
�� �� − ρj

�� ��
mean

ρj
�� ��

std

; ð1Þ
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where i and j denote the number of vectors for the input and
output data, respectively, and |ρij| denotes the absolute value
of the correlation coefficient calculated according to the vec-
tors of the ith input and jth output. |ρj|mean denotes the mean
of the absolute value in the vector of the jth output, and |ρj|std
denotes the standard deviation of the absolute value in the
output data vector. Equation (1) can be used to select a
feature (i.e., input data), which can be represented as a
change |ρx,y| to Zi in Figure 1.

2.2. Prediction Model Construction Using GPR. A Gaussian
process is a stochastic process that can be defined as a collec-
tion of random variables, and it is assumed that all data follow
a multivariate normal distribution [42]. This is described as
the Gaussian process assumption, and GPR uses an inference
regarding the predicted value based on this assumption [22].
GPR is also categorized as a machine-learning method based
on the Bayesian theory [43], and more details can be found in
Lee et al. [22] and Rasmussen [42].

The measurement data of the obtained sensors can be
used to perform GPR for prediction. Equation (2) describes a
noisy training datasetD comprised of a training input matrix
X and training output vector y:

D¼ X; yð Þf g ¼ xi;j; yi
À Áji¼ 1;…;N ; j¼ 1;…;T
È É

;

ð2Þ

where xi,j denotes the component of the training input
matrix X, and yi denotes the component in the training
output vector y, which have the sizes of N×T and N× 1,
respectively. Subsequently, the prediction of the Gaussian

mean and variance of the output are determined based on
the assumptions of Gaussian processes.

Equation (3) describes the relationship between the input
and output data using a regression function and observation
error vector:

y ¼ f Xð Þ þ ɛ; ð3Þ

where f (·) denotes the regression function of X, and ɛ
denotes the error vector. The errors of the observation are
assumed to comprise an independent and identically distributed
Gaussian distribution with a zeromean and constant variance of
the noise, indicated as N(0, σ2nI). The regression function
f(·) is assumed to have a Gaussian distribution with a zero-
mean and covariance function K(·,·), which is expressed as fol-
lows:

f Xð Þ ∼ gp O;K X;X 0ð Þð Þ: ð4Þ

For prediction purposes, the test input matrix X∗ is mea-
sured to estimate the test output vector y∗ using the Bayes
rule. The multivariate Gaussian variables are expressed as
follows:

f Xð Þ
f∗ X∗ð Þ

" #
¼ N O;

K X;Xð Þ K X;X∗ð Þ
K X∗;Xð Þ K X∗;X∗ð Þ

" # !
; ð5Þ

where f ∗(·) denotes the regression function of X∗, which is
expressed as a Gaussian distribution. K (X, X) denotes the
covariance matrix of the training input matrix X, K (X, X∗)
denotes the covariance matrix between the training inputs X
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FIGURE 1: Feature selection according to the correlation coefficient.

4 Advances in Civil Engineering

 7074, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/4853773 by U

lsan N
ational Institute O

f, W
iley O

nline L
ibrary on [04/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and test inputs X∗, K (X∗, X) denotes K (X∗, X)
T, and K (X∗,

X∗) denotes the covariance matrix of the test input matrix
X∗. However, noise exists in the training data shown in
Equation (3), as well as in the test data. Therefore, the noise
variance σ2n is added in the covariance matrix as follows:

y

y∗

" #�����X;X∗ ¼
f Xð Þ
f∗ X∗ð Þ

" #
þ ɛ

ɛ∗

" #
¼ N O;

Kþ σ2nI K∗

KT
∗ K∗∗

" # !
;

ð6Þ

where O denotes the zero matrix, and K, K∗, K
T
∗, and K∗∗

are indicated as K (X, X), K (X, X∗), K (X∗, X)
T, and K (X∗,

X∗), respectively. Therefore, the predictive mean and covari-
ance are expressed as follows:

y∗jy;X;X∗ ∼ N KT
∗ Kþ σ2nIð Þ−1y;K∗∗ − KT

∗ Kþ σ2nIð Þ−1K∗ð Þ:
ð7Þ

In this study, the automatic relevance determination
(ARD) kernel function is adopted for multidimensional
inputs, as follows:

k xp; xqjθ
À Á¼ θ22exp

1
2

∑
d

m¼1

xp − xq
À Á

2

θ21

" #
; ð8Þ

where xp and xq denote the input vectors of the pth and q,
respectively. The hyperparameter θ (as related to the accu-
racy of a covariance matrix) can indicate θ1 and θ2 in the case
of the ARD kernel function. In addition, θ1 denotes the
characteristic length scale of the dimension and θ2 denotes
the signal standard deviation. Using the ARD kernel func-
tion, the relevance of the input feature can be determined
based on θ1 [44].

2.3. Proposed Method Integrated with Feature Selection and
Prediction Model Construction. Figure 2 shows a flowchart of
the proposed method. It requires an iterative procedure with
varying threshold values of the Z-index, and each iteration
consists of two steps: input data selection (i.e., feature selec-
tion) and prediction-model construction. The input and out-
put data are collected during initialization, and |ρij| is
calculated for the ith input and jth output. Consequently, a
correlation coefficient matrix, such as that shown in Figure 1,
can be constructed for the entire dataset. Additionally, the
first threshold value of the Z-index is determined using its
predetermined minimum value (Zmin). Next, |ρj|mean and
|ρj|std are calculated for the jth output, and Zij is calculated
for ith input and jth output. Consequently, a Z-index coeffi-
cient matrix is constructed for the entire dataset.

Subsequently, for the jth output, the input data that sat-
isfy Zij≥Zth are selected. The selected input data are consid-
ered relevant to the target output (i.e., jth output) based on
the given threshold value of the Z-index (i.e., Zth). When the
relevant input data are selected, a probabilistic prediction
model is constructed using GPR, and the prediction error
is calculated for the test data. This procedure is repeated until

Zth exceeds a given maximum value (i.e., Zmax) or no input
data are selected for any of the output data; Zth is incremen-
ted by α each time. When the iterative procedure is termi-
nated, the best threshold value of the Z-index is determined
as the one with the minimum prediction error. More details
of the flowchart are provided in Section 3 with an example
application.

3. Application Example

3.1. Target Cable-Stayed Bridge and Sensing Data. To test the
proposed method, it is applied to the 2nd Jin-do Bridge, an
actual cable-stayed bridge connecting Jindo Island and Hae-
nam Province in the Republic of Korea. The bridge was
constructed in 2005 as an addition to the existing Jin-do
Bridge. It is a three-span steel-box girder cable-stayed bridge
with a midspan of 344m, side spans of 70m each, and a
width of 12.2m. The steel-box girder is supported by 60 steel
parallel wire strand cables, and all stayed cables are con-
nected to two A-shaped steel pylons on the concrete
piers [5, 45].

In Yang et al.’s [46, 47] previous studies, the relationship
between environmental factors and structural responses of
cable-stayed bridges was investigated. Similar to these stud-
ies, this study incorporates data collected from the thermo-
meters and anemometers as input data and uses the
measurement data of the cable tension forces as output
data. The locations of the sensors on the bridge are shown
in Figure 3.

Four thermometers are located on each section of the
two pylons (i.e., TMP001_1–TMP001_4 and TMP003_1–
TMP003_4), and seven sensors are placed on a section of
the central girder (i.e., TMP002_1–TMP002_7). In addition,
anemometers are located with a sensor on the pylon in the
direction of Jin-do (i.e., WGT001) and at the center of the
girder (i.e., WGT002). The anemometer has two channels:
wind speed and wind direction. The cable accelerometers
(CAC001-17) are located on 17 stayed cables arranged in
pairs. For example, CAC001 and CAC002 are located on
stayed cables from the left and right sides, respectively, in
the direction of the bridge axis. The tension force data of the
stayed cables are obtained using an accelerometer via a vibra-
tion method [48, 49].

All datasets (i.e., temperature, wind speed, wind direc-
tion, and cable tension force) were recorded for 5 weeks from
March 16 to April 12, 2019. In this example, the data for the
first 4 weeks are used as training data to construct a GPR
model, and the remaining weekly dataset is used as test data.
The dataset consists of 144 data points for 1 day; thus, the
training and testing datasets are comprised of 4,032 and
1,008 data points, respectively.

3.2. Performance Assessment of Predictive Mean. The mean
absolute percentage error (MAPE) is considered for the per-
formance assessment of the predictive mean. The root mean
square error (RMSE), which is widely used to quantify errors,
is known to be highly dependent on the data size [50]. Kim
and Kim [51] stated that the MAPE had the advantage of
scale independence because it was based on a ratio, whereas

Advances in Civil Engineering 5
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FIGURE 2: Flowchart of proposed method.
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FIGURE 3: Location of sensors at the 2nd Jin-do bridge.
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the RMS indicated scale-dependent measures. Therefore,
several studies have proposed scale-independent measures
[52, 53]. The MAPE indicates the accuracy or error of the
prediction as a percentage and is calculated as follows [54]:

MAPE¼ 100
n

∑
n

i¼1

ḟ Xið Þ − yi
yi

����
����; ð9Þ

where N denotes the number of measurement points, ḟ ðXiÞ :

denotes the predictive mean at the test input Xi and yi
denotes the actual measurement.

However, the MAPE can have different evaluation values
for the same error. For example, if ḟ ðXiÞ : and yi are assumed to
be 250 and 200, respectively, then theMAPE can be calculated
using Equation (9) as 20%. In contrast, if ḟ ðXiÞ : and yi are
assumed to be 200 and 250, respectively, the MAPE indicates
a percentage error of 25%. In addition to the previous prob-
lem, when the measurement approaches zero (i.e., yi≈ 0), the
MAPE value exponentially increases the amplification of this
phenomenon. In other words, the error increases rapidly
when the value of the measurement (i.e., yi) is small.

To resolve this problem with MAPE, Hyndman and
Koehler [50] proposed an improved method called symmet-
ric MAPE (sMAPE), which is expressed as follows:

sMAPE¼ 100
n

∑
n

i¼1

ḟ Xið Þ − yi
�� ��
ḟ Xið Þ�� ��þ yij jÀ Á

=2
: ð10Þ

Using the sMAPE to address the previous MAPE exam-
ple results in the same percentage error of ~22%. Addition-
ally, the sMAPE error percentage does not rapidly increase
when the measurement of the value is small (i.e., yi≈ 0). That
is, the sMAPE solves the MAPE problem. Therefore, this
study adopts the sMAPE to assess the predictive mean.

Nevertheless, a problem occurs when using sMAPE
when the signs of the measured and predicted values differ
(i.e., one is a positive number, and the other is a negative
number). Therefore, Shin et al. [54] proposed a new algo-
rithm to compensate for the MAPE and sMAPE problems.
However, the problem of having a different sign between the
measurement and prediction values does not occur in this
study; thus, the prediction error is calculated according to the
sMAPE.

3.3. Parametric Study on Prediction Results Based on
Correlation Coefficients. This paper proposes a method for
feature selection based on the Z-index, which can select fea-
tures according to the uniformity scale concerning the cor-
relation of the entire input and output data, as described in
Section 2. Two parametric studies are conducted using two
different feature-selection methods and varying threshold
values (i.e., criteria) to compare the effects of different
feature-selection schemes. First, the feature selection involves
ranking based on the absolute value of the correlation coeffi-
cient, and the criterion is to set constant values from 0.05 to
0.55 at 0.1 intervals. The six scenarios are listed in Table 1,
where a P as the first character of a scenario number indi-
cates that the feature selections are based on the Pearson

correlation coefficient. A prediction model is constructed
using GPR after the relevant input data are selected as the
criteria. Four weeks of data from March 16 to April 12, 2019
are used to train the learned model. The prediction results
are compared with the actual measurement data in terms of
sMAPE after the learned model performs the prediction for
the following week (April 12–19, 2019).

The correlation coefficient matrix for the 19 input and 17
output data points is shown in Figure 4. The input data
consist of 15 temperatures (i.e., Temps 1–15), two wind
speeds (i.e., W.S. 1 and W.S. 2), and two wind direction
data points. The output data consists of 17 tension force
data points (i.e., Cables 1–17). The units of these data are
°C, m/s, °, and kN, respectively. Darker shades of blue in the
correlation coefficient matrix indicate higher correlation
coefficients. For example, the tension forces of Cables 1–4
generally exhibit high correlation levels with the most input
data, particularly with Temps 5–8. In contrast, Cable 10
generally exhibits a low correlation with all input data.
Cables 8, 9, 11, and 12 generally exhibit a low correlation
level, but a relatively high correlation level with the wind
speed data (i.e., W.S. 1 and W.S. 2) compared with those
of other cables.

Based on this correlation coefficient matrix, a feature
(i.e., input data) is selected for each cable that is used for
predicting the tension force according to the criteria set for
each scenario. Table 2 shows the feature selection and cor-
responding prediction results for P1–P3 (i.e., jρj: ≥ 0:05, jρj : ≥
0:15, and jρj : ≥ 0:25), respectively.

First, many input data are selected overall for P1 (i.e., jρj
: ≥ 0:05) because the criterion of feature selection is the lowest
among those in all scenarios. In particular, 18 or 19 input
data points are selected for Cables 1–4 which are highly
correlated with most of the input data. In contrast, Cable
10 exhibits a low correlation with most of the input data,
and only three input data points are selected despite the low
criterion of 0.05. The running time and sMAPE values are
also listed in Table 2. These values are calculated by compar-
ing the actual measurement data with the prediction results
for the week of April 12–19, 2019, using the prediction mod-
els (GPR) as executed training for the 4 weeks fromMarch 16
to April 12, 2019. All sMAPE values are less than 1% and
most cables achieve high prediction performance. However,
increasing the amount of input data generally requires long
execution times. The results for Scenarios P2 and P3 indicate
a reduction in the selected input data (i.e., features) by

TABLE 1: Scenario number and associated criteria value based on
correlation coefficient.

Scenario number Criteria based on jρj :

P1 jρj : ≥ 0:05
P2 jρj : ≥ 0:15
P3 jρj : ≥ 0:25
P4 jρj : ≥ 0:35
P5 jρj : ≥ 0:45
P6 jρj≥ 0:55

Advances in Civil Engineering 7
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increasing the criterion, and the associated computational
time is reduced accordingly. Meanwhile, the sMAPE for
Cable 5 decreases with a decreasing number of selected input
data, whereas that for Cable 13 increases. Therefore, an
appropriate amount of input data must be considered for
each cable for prediction, and it is impossible to determine
this number using a uniform criterion based on the

correlation coefficient. The results for Scenarios P4–P6 (cri-
teria of 0.35–0.55) are listed in Table 3, and the overall results
are summarized in Figure 5.

The optimal criteria based on the correlation coefficient
varies for each cable, as listed in Table 4. For example, Cable 4
exhibits the best performance when using a criterion of 0.45,
whereas Cable 8 exhibits the best prediction performance

Temp 1

Temp 2

Temp 3

Temp 4

Temp 5

Temp 6

Temp 7

Temp 8

Temp 9

Temp 10

Temp 11

Temp 12

Temp 13

Temp 14

Temp 15

W.S. 1

W.D. 1

W.S. 2

W.D. 2

0.242

0.3047

0.1644

0.3608

0.5352

0.6197

0.3482

0.6049

0.3057

0.2582

0.2579

0.264

0.3513

0.2523

0.3871

0.1634

0.07778

0.1787

0.1805

0.1247

0.1823

0.0867

0.2343

0.4772

0.5791

0.3772

0.4511

0.2456

0.1788

0.1943

0.1382

0.2044

0.1405

0.2552

0.1099

0.1169

0.142

0.1856

0.2856

0.3488

0.1956

0.4109

0.6978

0.7918

0.5588

0.6764

0.4341

0.3566

0.372

0.3006

0.3748

0.287

0.4361

0.1541

0.04525

0.1883

0.2252

0.3653

0.4204

0.2392

0.4719

0.6888

0.7553

0.5488

0.6959

0.4842

0.4256

0.4359

0.381

0.4474

0.3549

0.4967

0.125

0.01964

0.1432

0.1269

0.08031

0.06653

0.05532

0.04639

0.0195

0.06454

0.03972

0.01902

0.08841

0.1055

0.1057

0.08475

0.06512

0.05892

0.04507

0.2179

0.09015

0.2451

0.1814

0.162

0.1598

0.1059

0.1557

0.1305

0.1111

0.09324

0.1844

0.1553

0.1631

0.1446

0.1729

0.1752

0.1595

0.1668

0.06523

0.005419

0.06785

0.01252

0.1195

0.1215

0.07866

0.1324

0.1681

0.1823

0.1506

0.1632

0.1345

0.1282

0.1313

0.1188

0.1203

0.1085

0.1322

0.008822

0.04378

0.02712

0.009042

0.0859

0.07928

0.04454

0.04661

0.02393

0.0245

0.05564

0.01192

0.1316

0.1381

0.1354

0.08073

0.06832

0.05621

0.04959

0.479

0.07108

0.4926

0.1383

0.09704

0.093

0.05415

0.06262

0.01527

0.0162

0.01684

0.03407

0.1058

0.1301

0.1112

0.09761

0.09451

0.07751

0.07025

0.3817

0.07217

0.4038

0.1486

0.007829

0.009836

0.007118

0.02177

0.07086

0.06084

0.09426

0.007815

0.04981

0.02596

0.04968

0.002885

0.000354

0.00245

0.01934

0.01366

0.001549

0.03757

0.03081

0.1432

0.1439

0.07959

0.1087

0.08295

0.04262

0.091

0.0774

0.1844

0.1968

0.1883

0.1417

0.1388

0.1106

0.1174

0.4633

0.09412

0.4848

0.1575

0.09026

0.08859

0.05021

0.0647

0.03289

0.006146

0.04611

0.01948

0.1157

0.1278

0.1237

0.09215

0.08391

0.07042

0.06897

0.3119

0.07952

0.3286

0.1197

0.04348

0.04395

0.02571

0.04309

0.149

0.1534

0.179

0.09175

0.1316

0.09985

0.1038

0.04024

0.03637

0.03171

0.04865

0.1941

0.06515

0.1761

0.08973

0.09608

0.05817

0.05371

0.009391

0.03426

0.06142

0.01739

0.006295

0.03034

0.05852

0.04616

0.06804

0.03165

0.04519

0.007145

0.06478

0.02357

0.06888

0.05929

0.08562

0.07665

0.04845

0.05851

0.05081

0.04513

0.01794

0.1046

0.07266

0.08313

0.06667

0.07563

0.0754

0.06705

0.05672

0.08573

0.0533

0.09469

0.04451

0.1105

0.1579

0.0811

0.2188

0.321

0.3886

0.2319

0.3349

0.1673

0.129

0.132

0.1248

0.1714

0.1313

0.2248

0.2174

0.05758

0.2288

0.1616

0.06753

0.02518

0.02454 0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.03922

0.2721

0.3796

0.2915

0.1628

0.09233

0.01345

0.03364

0.05735

0.02545

0.03222

0.04761

0.1579

0.1021

0.2069

0.2597

Cable 1 Cable 2 Cable 3 Cable 4 Cable 5 Cable 6 Cable 7 Cable 8 Cable 9 Cable 10 Cable 11 Cable 12 Cable 13 Cable 14 Cable 15 Cable 16 Cable 17

FIGURE 4: Correlation coefficient matrix of input and output data.

TABLE 2: Number of selected input data, sMAPE values, and computational times for prediction in Scenarios P1–P3.

Cable
number

P1 P2 P3

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Cable 1 19 0.393 26.894 18 0.410 29.320 13 0.372 22.178
Cable 2 19 0.471 37.859 12 0.240 7.226 5 0.237 2.289
Cable 3 18 0.516 36.906 18 0.516 36.910 14 0.490 20.611
Cable 4 18 0.456 25.692 15 0.457 15.549 14 0.444 12.184
Cable 5 14 0.890 34.657 3 0.763 1.707 0 — —

Cable 6 17 0.649 36.152 10 0.632 9.301 0 — —

Cable 7 15 0.166 18.780 4 0.169 2.723 0 — —

Cable 8 13 0.386 14.668 2 0.176 0.934 2 0.176 0.920
Cable 9 15 0.337 19.766 2 0.211 0.920 2 0.176 0.920
Cable 10 3 0.276 1.915 0 — — 0 — —

Cable 11 18 0.408 36.180 6 0.518 3.558 2 0.269 0.828
Cable 12 15 0.274 18.789 2 0.115 0.919 2 0.115 0.914
Cable 13 11 0.151 13.338 4 0.199 1.809 0 — —

Cable 14 9 0.172 9.554 0 — — 0 — —

Cable 15 15 0.433 29.294 0 — — 0 — —

Cable 16 19 0.233 50.595 12 0.234 13.432 3 0.233 1.945
Cable 17 11 0.285 11.625 7 0.315 6.047 4 0.282 2.793
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when using a criterion of 0.15. Moreover, some cables may
not be predicted if the criterion is set too high because no
selected features (i.e., input data) would be available for the
high criterion. This demonstrates that the use of a fixed crite-
rion based on the correlation coefficient is inefficient.

3.4. Parametric Study on Prediction Results Based on Z-Index.
Feature selection is performed in this parametric study based
on the Z-index, and the criteria are set to constant values
from −1.5 to 1 at 0.5 intervals. Table 5 shows the six

scenarios, where a “Z” as the first character of a scenario
number indicates that the feature selections are based on
the Z-index. A prediction model is constructed using GPR
after the input data are selected. Similar to the testing done in
Section 3.2, this parametric study uses 4 weeks of data for
training from March 16 to April 12, 2019, and the prediction
is made for the following week April 12–19, 2019. The Z-
index matrix for the 19 input and 17 output data points is
calculated using Equation (1) and correlation coefficients
from Figure 5, as shown in Figure 6.

TABLE 3: Number of selected input data, sMAPE values, and computational times for prediction in Scenarios P4–P6.

Cable
number

P4 P5 P6

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Cable 1 6 0.384 3.414 3 0.367 1.693 2 0.418 1.019
Cable 2 4 0.250 2.207 3 0.303 1.240 1 0.412 0.518
Cable 3 10 0.401 8.224 4 0.491 2.157 4 0.491 2.165
Cable 4 14 0.444 12.373 7 0.442 3.893 3 0.475 1.529
Cable 5 0 — — 0 — — 0 — —

Cable 6 0 — — 0 — — 0 — —

Cable 7 0 — — 0 — — 0 — —

Cable 8 2 0.176 0.928 2 0.176 0.934 0 — —

Cable 9 2 0.211 0.927 0 — — 0 — —

Cable 10 0 — — 0 — — 0 — —

Cable 11 2 0.269 0.839 0 — — 0 — —

Cable 12 0 — — 0 — — 0 — —

Cable 13 0 — — 0 — — 0 — —

Cable 14 — — — — — — — — —

Cable 15 0 — — 0 — — 0 — —

Cable 16 1 0.197 0.468 0 — — 0 — —

Cable 17 1 0.301 0.556 0 — — 0 — —

Cable

sM
A

PE
 (%

)

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9 10

|ρ| ≥ 0.05
|ρ| ≥ 0.15
|ρ| ≥ 0.25

|ρ| ≥ 0.35
|ρ| ≥ 0.45
|ρ| ≥ 0.55

11 12 13 14 15 16 17

FIGURE 5: sMAPE of prediction results in six scenarios with varying correlation coefficient-based threshold value for Cables 1–17.
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One noteworthy point for thematrix in Figure 6 is that the
Z-index values are relatively uniformly distributed, compared
with those of the matrix in Figure 4. This indicates that the
values are normalized by introducing the Z-score. Based on
this Z-index matrix, features (i.e., input data) are selected
according to the criteria for each scenario to predict the ten-
sion force of each cable. The results for Scenarios Z1–Z6 (i.e.,
criteria of −1.5 to 1) are shown in Tables 6 and 7 and the
overall results are summarized in Figure 7. The numbers of
selected input data are similar to each other, unlike the previ-
ous parametric study based on the correlation coefficient, as
shown in Tables 6 and 7. In addition, each cable has a similar
running time, which was realized by introducing the Z-index.

Furthermore, the variations in sMAPE according to the
Z-index are shown in Figure 8(a). Z5 (Z-index of 0.5) and Z6
(Z-index of 1) exhibit the lowest errors compared to those of
Z1–Z4. The minimum-error predictions for the 17 cables are
shown in Figure 8(b). It is noteworthy that Scenario Z5
shows the minimum prediction errors for more cables than
those in the other scenarios. Therefore, in this example, the
optimal Z-index-based criterion for feature selection (input
data) is determined to be 0.5.

4. Results of Probabilistic Response Prediction

The ability of the proposed method to improve prediction is
confirmed by selecting the optimal input data. The results for
Cables 1 and 2 following Scenario Z5 using the proposed
method and optimal results from Section 3 are shown in
Figures 9(a) and 9(b), respectively. The measurement data
(i.e., training data and test data), predictive mean, and 95%
prediction intervals are denoted as black dots, a blue line, and
a gray area, respectively. The confidence interval level can be
set differently depending on the criteria that are the focus of
the user. Additionally, measurement data corresponding to a
duration of 4 weeks (March 16 to April 12, 2019) are utilized
to establish the GPR. However, Figures 9(a) and 9(b) depict
3 days of training data to clearly show the prediction results.
The prediction results are compared with the actual mea-
surement data after the constructed GPR performed the pre-
diction for the following week (April 13 to April 19, 2019).
The data points are classified as abnormal if the test (actual
measurement) data from points April 13 to April 19, 2019,
deviated significantly from the 95% predicted interval, as
shown in Figure 9. Therefore, it is possible to establish a
threshold for anomaly detection and assess the structural
condition of the cable system in real-time by utilizing the
prediction results. The proposed method is expected to pro-
duce more accurate and efficient prediction results, thereby
enabling the operation and maintenance of structures.

Figure 10 shows the predictive means and 95% prediction
intervals of tension forces for representatively selected cables,
and it is observed that most of the actual data are located
within the confidence intervals. Therefore, the proposed
method provides accurate predictive means and prediction
interval results overall. For example, the tension forces of
Cables 1 and 2 fluctuate smoothly with a relatively constant
cycle, and in these cases, the prediction results also fluctuate
smoothly with a relatively small confidence interval. On the
other hand, the tension forces of Cables 5 and 7 dramatically
change in certain ranges. In these cases, the prediction results
still show good agreement with the actual measurement (i.e.,
test data), but it is also observed that the overall confidence
interval of the prediction results is wide due to irregular fluc-
tuations in the measurement data. In the case of Cable 12;
however, the predictive confidence interval is wide even
though the test data continues to maintain a certain level
without significant fluctuations. This is thought to be due to
a numerical problem induced by a low correlation coefficient
of the cable with the other cables, which can be a limitation of
the proposedmethod. Some other researchers suggestedmak-
ing data-driven predictions considering the correlation coef-
ficient between outputs. It is thought that the proposed
method can be improved when it considers multioutput cor-
relation in addition to input–output correlation, because in
the case of a complex structural system such as a cable-stayed
bridge, the tension forces of cables may be highly correlated.
However, the predictive mean provided by the proposed
method still shows good agreement with the test data. In
conclusion, the proposed method provides accurate predic-
tive means and prediction interval results, and immediate

TABLE 4: Optimal criteria of cables based on correlation coefficient.

Cable number
Optimal criteria based on
correlation coefficient

1 jρj : ≥ 0.45
2 jρj: ≥ 0.25
3 jρj: ≥ 0.35
4 jρj: ≥ 0.45
5 jρj: ≥ 0.15
6 jρj: ≥ 0.15
7 jρj: ≥ 0.05
8 jρj: ≥ 0.15
9 jρj: ≥ 0.15
10 jρj: ≥ 0.05
11 jρj: ≥ 0.25
12 jρj: ≥ 0.25
13 jρj: ≥ 0.05
14 jρj: ≥ 0.05
15 jρj: ≥ 0.05
16 jρj: ≥ 0.35
17 jρj≥ 0.25

TABLE 5: Scenario number and associated criteria based on Z-index.

Scenario number Criteria value based on Z-index

Z1 z≥ − 1:5
Z2 z≥ − 1
Z3 z≥ − 0:5
Z4 z≥ 0
Z5 z≥ 0:5
Z6 z≥ 1
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management of the structure or sensor fault should be con-
ducted if the measurement data deviates continuously from
the prediction interval, as this would be considered an abnor-
mal response.

5. Conclusions

This study proposed a data-driven method for predicting the
probabilistic response of cable-stayed bridges. The objective

was to effectively predict the tension force of the cables by
constructing an optimal prediction model based on the Z-
index. This method improved the accuracy and efficiency of
the prediction model while considering the correlation
between the environmental data and cables. The proposed
method was comprised of two steps. The first step was fea-
ture selection for the decision of an optimal criterion based
on the Z-index, and the second step was the construction of a
prediction model by employing GPR. The best input data

Temp 1

Temp 2

Temp 3

Temp 4

Temp 5

Temp 6

Temp 7

Temp 8

Temp 9

Temp 10

Temp 11

Temp 12

Temp 13

Temp 14

Temp 15

W.S. 1

W.D. 1

W.S. 2

W.D. 2

–0.4495

–0.02371

–0.9758

0.3566

1.539

2.112

0.2708

2.012

–0.01724

–0.3393

–0.3418

–0.2998

0.292

–0.3791

0.5346

–0.9823

–1.563

–0.8789

–0.8665

–0.7797

–0.3648

–1.054

0.01079

1.762

2.497

1.041

1.574

0.09227

–0.3897

–0.2776

–0.6828

–0.2054

–0.6663

0.1609

–0.8865

–0.836

–0.6554

–0.3405

–0.4639

–0.1386

–0.9265

0.1806

1.656

2.14

0.9412

1.546

0.3001

–0.0984

–0.0195

–0.3867

–0.005003

–0.4567

0.3101

–1.14

–1.7

–0.9643
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FIGURE 6: Z-index matrix of input and output data.

TABLE 6: Number of selected input data, sMAPE values, and computational times for prediction in Scenarios Z1–Z3.

Cable
number

Z1 Z2 Z3

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Cable 1 18 0.410 38.680 18 0.410 38.708 14 0.370 27.106
Cable 2 19 0.471 49.813 18 0.473 53.968 12 0.240 9.618
Cable 3 18 0.516 48.808 17 0.516 40.298 14 0.490 27.160
Cable 4 18 0.456 33.900 15 0.457 20.591 14 0.444 16.164
Cable 5 19 0.918 74.711 17 0.885 43.998 13 0.896 28.766
Cable 6 17 0.649 47.555 15 0.649 42.080 14 0.666 24.234
Cable 7 16 0.167 35.730 15 0.166 24.694 14 0.174 38.301
Cable 8 19 0.499 39.730 19 0.499 39.493 14 0.386 31.504
Cable 9 19 0.335 44.947 19 0.335 44.749 14 0.347 22.482
Cable 10 19 0.244 35.710 19 0.244 35.586 11 0.277 19.246
Cable 11 19 0.422 38.476 19 0.422 38.425 13 0.353 14.609
Cable 12 19 0.298 22.751 18 0.294 40.293 14 0.277 25.594
Cable 13 19 0.174 47.143 17 0.146 32.699 11 0.151 17.751
Cable 14 17 0.167 47.608 15 0.170 31.275 12 0.171 21.887
Cable 15 18 0.429 36.201 16 0.429 44.307 13 0.432 34.108
Cable 16 18 0.238 30.645 17 0.238 36.072 12 0.234 17.806
Cable 17 19 0.297 45.870 19 0.297 45.723 10 0.285 14.256
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were determined through feature selection based on the Z-
index according to an optimal criterion. Additionally, the
accuracy of the prediction model was improved while reduc-
ing running time. A probabilistic model was constructed
using GPR after selecting the input data according to the
proposed feature selection, considering the uncertainty of
the data and the machine-learning model. The standard devi-
ation and predictive mean of the tension force were provided,

and the GPR results were used to assess the stationary state of
stayed cables in comparison with the obtained measurement
data. The proposed method was applied to an application
example that utilized measurement data from various sensors
deployed on the 2nd Jin-do Bridge, an actual cable-stayed
bridge in the Republic of Korea. Two parametric studies
were performed using two different feature-selectionmethods
based on the correlation coefficient and Z-index to compare

TABLE 7: Number of used input data, sMAPE values, and computational times for prediction in Scenario Z4–Z6.

Cable
number

Z4 Z5 Z6

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Number of
selected

input data
sMAPE (%) Time (min)

Cable 1 7 0.333 6.049 4 0.403 2.854 3 0.367 2.220
Cable 2 7 0.293 8.383 4 0.250 2.856 4 0.250 2.885
Cable 3 7 0.430 5.693 4 0.491 2.744 3 0.547 2.113
Cable 4 11 0.423 10.286 4 0.403 2.852 3 0.475 1.934
Cable 5 7 0.900 7.568 3 0.763 2.195 3 0.763 2.202
Cable 6 12 0.649 24.671 10 0.632 12.273 1 0.577 0.593
Cable 7 13 0.174 27.281 4 0.169 3.504 3 0.199 2.661
Cable 8 6 0.314 6.748 2 0.176 1.172 2 0.176 1.181
Cable 9 5 0.280 3.609 2 0.211 1.171 2 0.211 1.174
Cable 10 7 0.283 8.702 5 0.314 4.788 3 0.276 2.473
Cable 11 5 0.518 4.860 2 0.269 1.059 2 0.269 1.062
Cable 12 6 0.179 6.831 2 0.115 1.169 2 0.115 1.177
Cable 13 8 0.153 8.196 6 0.212 4.482 5 0.173 3.986
Cable 14 11 0.172 19.236 8 0.173 8.812 2 0.171 1.394
Cable 15 11 0.452 22.352 5 0.359 5.923 2 0.366 0.921
Cable 16 8 0.224 10.158 3 0.233 2.500 3 0.233 2.517
Cable 17 7 0.315 7.845 5 0.292 3.526 4 0.282 3.640

Cable
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1 2
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FIGURE 7: sMAPE of prediction results in six scenarios with varying Z-index-based threshold value for Cables 1–17.
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the effects of different feature-selection schemes. Conse-
quently, it was observed that an optimal feature selection
criterion could be determined based on the Z-index. This
was because the Z-index values were uniformly distributed,
in contrast with the correlation coefficient matrix. Subse-
quently, the prediction results from the GPR exhibited highly
accurate results after the input features were selected using the
optimal criterion, despite reducing the computational cost.

It was also observed that the prediction results were less
accurate for a few cables with relatively low correlation coeffi-
cients between the input and output data, which could be the
limitation of the proposed method. However, some other
researchers suggested making data-driven predictions consider-
ing the correlation coefficient between outputs. It is thought that
the proposed method can be improved when it considers multi-
output correlation in addition to input–output correlation,

1 2

2

4

6

8

0
3 4

Z (scenario)
5 6

sM
A

PE
 (%

)

Cable 2
Cable 1

Cable 3
Cable 4
Cable 5
Cable 6
Cable 7
Cable 8
Cable 9

Cable 10
Cable 11
Cable 12
Cable 13
Cable 14
Cable 15
Cable 16
Cable 17

ðaÞ

1 2

2

4

6

3 4
Z (scenario)

5

Th
e n

um
be

r o
f m

in
im

um
 er

ro
r

ðbÞ
FIGURE 8: (a) Results of the cumulative value and sMAPE in Scenarios Z1–Z6 and (b) number of minimum error predictions in Scenarios
Z1–Z6.
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because in the case of a complex structural system such as a
cable-stayed bridge, the tension forces of cables may be highly
correlated.
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