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Aberrant neural computation of social
controllability in nicotine-dependent
humans
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Social controllability, or the ability to exert control during social interactions, is crucial for optimal
decision-making. Inability to do somight contribute tomaladaptive behaviors such as smoking, which
often takes place in social settings. Here, we examined social controllability in nicotine-dependent
humans as they performed an fMRI task where they could influence the offers made by simulated
partners. Computational modeling revealed that smokers under-estimated the influence of their
actions and self-reported a reduced sense of control, compared to non-smokers. These findingswere
replicated in a large independent sample of participants recruited online. Neurally, smokers showed
reduced tracking of forward projected choice values in the ventromedial prefrontal cortex, and
impaired computation of social prediction errors in the midbrain. These results demonstrate that
smokerswere lessaccurate in estimating their personal influencewhen the social environment calls for
control, providing a neurocomputational account for the social cognitive deficits in this population.
Pre-registrations: OSF Registries|How interoceptive state interacts with value-based decision-
making in addiction (fMRI study).OSFRegistries|COVID-19: social cognition,mental health, andsocial
distancing (online study).

Forhumans, our social environmentpresents themost challenging situation
for exerting behavioral control, due to its high degree of complexity and
uncertainty. Social controllability, defined as one’s ability to exert control
during interpersonal interactions, is thus essential for optimal decision-
making in everyday scenarios1. Disruptions in this ability might lead to
suboptimal behaviors such as drug abuse, which is often intertwined with
social dynamics. Notably, smoking and nicotine use exemplify highly social
activities, particularly prevalent among younger adults2,3. While prior work
has examined various constructs related to nicotine addiction (e.g., cue
reactivity, impulsive control), little is known regarding the mechanisms
underlying social cognitive deficits in nicotine-dependent humans. Speci-
fically, understanding the distinction in how human smokers exert and
perceive social control compared to non-smokers at both neural and
computational levels remains elusive.

Previously, reinforcement learning (RL) algorithms have been used to
capture how drugs might alter neural computations underlying decision-
making, such as the encoding of reward prediction errors by themesolimbic
circuit4–6. Furthermore, economic preference models such as temporal

discountinghave also revealed that substance-dependent individuals showa
preference for smaller immediate rewards over delayed larger rewards7–9

which may reflect a complex interaction between cognitive control, time
perception, and risk preference10–12. More recent computational models
have linked addiction to dysfunctions in model-based control13,14 and for-
ward planning15–17. Others have postulated that thesemodel-basedplanning
deficits in addiction are further amplified by complex environments18,19.
However, empirical evidence supporting these computational frameworks
in substance-dependent humans - especially in the context of social
decision-making - is still scarce.Here, we aim to directly examine the neural
computations underlying social controllability in substance-dependent
humans (smokers v.s. non-smokers), using a computational psychiatry
approach and nicotine addiction as a test case.

Basedon the literature reviewed thus far,wehypothesized that smokers
would demonstrate reduced ability to exert social control, subserved by
reduced neural computations of social forward planning signals. At the
neural level, previous work shows that the ventromedial prefrontal cortex
(vmPFC) is important for tracking the downstreameffects of human agents’
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current choices in order to exploit the controllability of a simulated social
environment in healthy volunteers1. The vmPFC has been consistently
shown to encode cognitivemaps, an efficientway to represent task space and
environmental structure that are crucial for model-based planning20. Using
a similar decision-making task (Fig. 1) in smokers and non-smokers across
two independent samples (in-person fMRI sample: n = 17 for smokers and
n = 25 for non-smokers; online replication sample: n = 72 for smokers and
n = 147 for non-smokers; seeMethods and Supplementary Tables S1, S2 for
participant characteristics), the current study examined how vmPFC-
dependent social controllability computationmight differ betweennicotine-
dependent human smokers and non-smokers. Participants made choices
about accepting or rejecting monetary proposals from simulated partners
(i.e., the ultimatum game; Fig. 1a); crucially, and different from the typical
ultimatum game, their choices could increase or decrease the future
monetary proposals from the partners in a probabilistic fashion (Fig. 1b).
We used computational modeling (see Methods) to quantify a key para-
meter δ (“estimated influence”) representing the mentally simulated influ-
ence of one’s actions on future social outcomes1.We predicted that smokers
would underestimate the level of influence their actions have on the future,
compared to controls, accompanied by reduced neural activation in the
vmPFC. A secondary analysis will also examine neural activations (e.g.,
midbrain) related to social prediction errors in both groups.

Results
Smokers failed to exploit the controllability of their social
interactions
We first evaluated model-agnostic measures of participants’ behaviors to
determine their ability to detect and exploit the controllability of their
interactions with simulated partners in this task, indexed by the offer
amount they obtained. Compared to non-smokers who successfully raised
the offers over time (Fig. 2a), smokers were unable to exploit the controll-
ability of their interactions, indexed by the flat or slightly decreasing offer
sizes over time (Fig. 2b). On average, smokers received lower offers
($4.5 ± 2.14) compared to controls ($5.98 ± 1.95; t(40) = 2.31, p = 0.0131;
Cohen’s d =−0.72; Fig. 2b). This suggests that overall, smokers failed to
exploit the controllability of their social environment.

Given the contingencies designed in the game, participantswould need
to strategically reject smaller offers to raise future ones. Thus, we compared

rejection rates between smokers and non-smokers. While total rejection
rateswere not significantly different between smokers (43.23% ± 23.75) and
non-smokers (50.26% ± 14.79; P > 0.05; Cohen’s d =−0.35) (Fig. 2c),
smokers exhibited lower rejection rates (46.72% ± 33.53) for medium sized
($4–$6) offers compared to non-smokers (66.93% ± 33.20; t(40) = 2.27,
p = 0.0144; Cohen’s d =−0.61); Fig. 2d. There were no significant differ-
ences for low ($1–$3) or high ($7–$9) offers. Thisfinding suggests that a lack
of strategic rejection of medium sized offers contributed to smokers’
inability to raise offers overall.

Although smokers reported a lower sense of control (52.40% ± 20.76)
compared to non-smokers (65.91% ± 22.39; t(37) =−1.93, p = 0.062;
Cohen’s d =−0.63; Fig. 2e), this difference was not statistically significant
(potentially due to the small sample size; due to technical failures, sense of
control ratings for three non-smoker participants were alsomissing). Taken
together, these model-agnostic behavioral results reveal impaired social
controllability in smokers, primarily indexedby their reduced ability to raise
offers in the Controllable condition.

Smokers under-estimated the influence of their current
choices on future interactions
Next, we sought to uncover the computational mechanisms underlying
participants’ choices using a series of models including various depths of
forward thinking (FT) computations (1 to 4) while accounting for norm
violation in subjective utility, a model not involving FT but still considering
norm violation (0-step), and a model solely relying on cached value in a
model-free fashionwithout forward thinking or normviolation (model-free
reinforcement). Model comparison results demonstrated that in the con-
trollable condition, all the FT models better explained both smokers’ and
non-smokers’ choices compared to the 0-step or model-free RL model
(Table S3). Consistent with our previous work, the 2-step FT model also
showed good parameter recoverability (Tables S4, S5) and was selected for
subsequent statistical and neural analyses. Overall, the 2-step FT model
predicted non-smokers’ choices with an 86.21% accuracy (Fig. 3b) and
smokers’ choices with an 86.47% accuracy (Fig. 3c).

Next, we examined parameters from the 2-step model (see Table 1 for
all parameter values). Our key parameter of interest here is δ, representing
the mentally estimated controllability or influence of one’s current choices
on future offers.We found a significant difference in this parameter between

Fig. 1 | Experimental paradigm. a Participants
played the social controllability task. At the start of
the task, participants were only informed about the
team with whom they were playing but not how the
teams differed in terms of their social controllability.
As such, they would need to learn the contingencies
between their actions and consequences during their
interactions with each team.Within the same block,
they played with different virtual individuals from
the same team for each trial. Participants’main goal
is to decide whether to accept or reject an unfair offer
from a virtual team member proposing how to
divide $20. If the participant accepts, both part-
ners will receive the proposed amount. If the parti-
cipant rejects, both partners will receive $0. At the
end of the game, participants rated their perceived
controllability over their interactions for each team.
b A schematic of contingencies for the controllable
condition of the task displays how the following
offer was generated based on the participant’s pre-
vious action. If participants accepted the current
offer (si), the subsequent offer (siþ1) decreased by $0,
$1, $2 with a 1/3 probability for each. If they rejected
the current offer (si), the subsequent offer (siþ1)
increased by $0, $1, $2 with a 1/3 probability
for each.
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Fig. 2 | Smokers failed to exploit the controllability of controllable social inter-
actions compared to non-smokers (in-person fMRI sample). In the controllable
condition of the task, (a) smokers’ offer sizes (n = 17) slightly decrease from trial to
trial while non-smokers’ (n = 25) offer sizes increase from trial to trial. Shaded
patches indicated SEM. b A two-sampled t-test revealed that individual mean offer
sizes are significantly lower for smokers ($4.5 ± 2.14) compared to non-smokers
($5.98 ± 1.95; t(40) = 2.31, p = 0.0131; Cohen’s d =−0.72). Error bars indicate SEM.
c Overall rejection rate was not significantly different for smokers (43.23% ± 23.75)
compared to non-smokers (50.26% ± 14.79; p > 0.05; Cohen’s d = 0.35). Error bars

indicate SEM. dHowever, when rejection rates were divided and categorized by low
($1–$3), medium ($4–$6) and high ($7–$9) offers, smokers had a significantly lower
rejection rate for medium offer sizes (46.72% ± 33.53) compared to non-smokers
(66.93% ± 33.20; t(40) = 2.27, p = 0.0144; Cohen’s d =−0.61). Error bars indicate
SEM. e Perceived controllability rated on a scale of 1% to 100% after each condition
of the task was not significantly different between smokers (52.40% ± 20.76) and
non-smokers (65.91% ± 22.39; t(37) = 1.93, p = 0.062; Cohen’s d =−0.63). Error
bars indicate SEM. For figure source data refer to (Supplementary Data 1).

Fig. 3 | A computational model of forward thinking (FT) revealed that smokers
were able to mentally simulate future interactions, but inaccurately under-
estimated their influence on future offers (in-person fMRI sample). aA schematic
demonstrating how an agent might mentally simulate the values of future states
using a forward thinking model. Simulated offers increase or decrease by estimated
influence δ; dependent on participants’ choice to accept or reject the split of money.
b The 2-step model of FT predicted non-smokers’ choice in the ‘Controllable’

condition of the task with a mean accuracy rate of 86.21% (bold black line). c The
2-step model of FT predicted smokers’ choice in the ‘Controllable’ condition of the
task with a mean accuracy rate of 86.47%. d The parameter of interest, estimated
influence, estimated from the 2-step FT model in the ‘Controllable’ condition of the
task was significantly lower for nicotine- smokers (0.352 ± 1.54) compared to non-
smokers (1.40 ± 0.654; t(40) =−3.02, p = 0.002; Cohen’s d = 0.89). Error bars indi-
cate SEM. For figure source data refer to (Supplementary Data 1).

https://doi.org/10.1038/s42003-024-06638-z Article

Communications Biology |           (2024) 7:988 3



smokers (0.352 ± 1.54) and non-smokers (1.40 ± 0.654; t(40) =−3.02,
p = 0.002; Cohen’s d =−0.89; Fig. 3d).

There was no order effect on delta in either group (Ps > 0.1; see Sup-
plementaryResults), similar to our previous results1. This result suggests that
while engaging a 2-step forward thinking model, smokers significantly
underestimated the potential impact of their current choices on future
interactions compared to non-smokers. No other parameters showed a
significant difference between groups. These findings suggest that a lower δ
– a reduced estimate of influence of one’s actions on the environment –

serves a candidate computational substrate for impaired controllability
observed in smokers.

Replication of behavioral and computational results in an
independent online sample
Next, we analyzed data collected from an independent online sample of
smokers andnon-smokers to assess the generalizability of the behavioral and
computational findings observed in the in-person fMRI study (see Table S2
for online participants’ characteristics). In line with findings from the in-

Table 1 | Parameter estimates from the 2-step forward thinking model

Inverse temperature Sensitivity to norm violation Initial norm Adaptation rate Estimated influence
β α μ ε δ

fMRI Sample

Non-smokers 8.814 (8.464) 0.687 (0.313) 8.342 (7.555) 0.171 (0.160) 1.396 (0.654)

Smokers 9.172 (7.662) 0.699 (0.411) 10.517(7.478) 0.284 (0.338) 0.352 (1.544)

t-value 0.14 0.105 0.92 1.454 −3.018

p value 0.445 0.458 0.182 0.077 0.002**

Online Sample

Non-smokers 9.032 (8.498) 0.754 (0.238) 8.418 (6.994) 0.336 (0.295) 1.351 (0.833)

Smokers 9.206 (8.737) 0.743 (0.311) 9.871 (7.883) 0.306 (0.315) 1.119 (1.016)

t-value −0.140 0.269 −1.328 0.679 1.677

p value 0.438 0.388 0.093 0.253 0.045*

Mean (SD) of parameters estimated in themodel include inverse temperature, sensitivity to norm violation, initial norm, adaptation rate and estimated influence (parameter of interest). Statistics for the fMRI
sample (non-smokers n = 17; smokers n = 25) are obtained through a two-sample t-test, while the online sample (non-smokers n = 147; smokers n = 72) utilizes a non-parametric bootstrapping test.

Fig. 4 | Replication study: smokers perceived and inaccurately under-estimated
the influence of their current choices on future interactions in an independent
online sample. In the controllable condition of the task (a) smokers’ (n = 72) offers
increased trial-by-trial but remained below non-smokers’(n = 147) offer sizes.
Shaded patches indicated SEM. bA non-parametric test shows that mean offer sizes
were significant lower for smokers ($5.53 ± 1.85) compared to non-smokers
($6.06 ± 1.68; p = 0.0266; Cohen’s d =−0.30). Error bars indicate SEM. c Overall
rejection rates were not significantly different between smokers (51.57 ± 12.36) and
non-smokers (53.97% ± 9.85; p > 0.05; Cohen’s d =−0.21). Error bars indicate SEM.
d However, when rejection rates were divided and categorized by low ($1–$3),
medium ($4–$6) and high ($7–$9) offers, a non-parametric bootstrapping test

shows that smokers had a significantly lower rejection rate for medium offer sizes
(57.59% ± 29.34) compared to non-smokers (66.40% ± 27.24; p = 0.0175; Cohen’s
d =−0.31). e Perceived controllability rated on a scale of 1% to 100% after each
condition of the task was significantly lower among smokers (52.68% ± 34.46)
compared to non-smokers (61.32% ± 34.63; p = 0.0442; Cohen’s d =−0.25). Error
bars indicate SEM. f The parameter of interest, estimated influence, estimated from
the 2-step forward thinking model in the ‘Controllable’ condition of the task, was
significantly lower for smokers (1.119 ± 1.016) compared to non-smokers
(1.351 ± 0.833; p = 0.0447; Cohen’s d = 0.25). Error bars indicate SEM. For figure
source data refer to (Supplementary Data 1).
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person sample, smokers recruited online also exhibited reduced offer sizes
over time compared to non-smokers, albeit with a slightly upward trend in
their offer trajectory (Fig. 4a).On average, smokers still received significantly
lower offers (5.53 ± 1.85) compared to non-smokers (6.06 ± 1.68; boot-
strapping p = 0.0266; Cohen’s d =−0.30; Fig. 4b), although this effect size
was smaller than the in-person study. These findings highlight that smokers
recruited online, similar to those recruited in-person, were less successful
than non-smokers at exploiting the controllability of the social environment.

Consistent with our in-person sample, we found no significant dif-
ferences in total rejection rates between smokers (51.57% ± 12.36) and non-
smokers (53.97% ± 9.85) (p = 0.077; Cohen’s d =−0.21; Fig. 4c). Never-
theless, when we analyzed rejection rates based on offer size (low: $1–$3,
medium: $4–$6, and high: $7–$9), we replicated the previously observed
pattern of lower rejection rates among smokers formediumoffers (smokers:
57.59% ± 29.34, non-smokers: 66.40 ± 27.24; p = 0.0175; Cohen’s
d =−0.31; Fig. 4d). Leveraging the existence of an independent risky
decision-making task in this cohort21, we then tested whether the group
difference in rejection rate observed here were attributable to individual
differences in risk aversion (see SupplementaryMethods for details). To this
end, we constructed GLMs with risk aversion parameter values estimated
from this task22 as an independent variable to predict rejection rate. This
analysis demonstrated that risk aversion did not underpin the observed
differences in rejection rates (for medium-sized offers) between the subject
groups (Table S8).

Finally, online smokers self-reported a significantly reduced sense of
control than online non-smokers (smokers: 52.68% ± 34.46, non-smokers:
61.32% ± 34.63; p = 0.0442; Cohen’s d =−0.25; Fig. 4e), despite a smaller
effect size compared to the in-person study. Taken together, these model-
agnostic analyses of a much larger and variable online sample provided
converging evidence that smokers showed impairments in their ability to
exploit the controllability of their social interactions, indexed by reduced
ability to raise offers in theControllable condition.Wealso found that group

differences in perceived controllability ratings diverged between in-person
and online samples, reflecting the huge variability in subjective perception.

Next, we applied the same computational models to fit the choice data
collected from online participants. Overall, model-based results were also
consistent between the in-person and online sample. Specifically, we found
that the estimated influence parameter from the 2-step model was sig-
nificantly reduced in smokers (1.12 ± 1.02) compared to non-smokers
(1.35 ± 0.83; p = 0.0447; Cohen’s d = 0.25; Fig. 4f). Similar to our in-person
sample and previous study1, we did not observe any order effects on the
estimated controllability parameter (Ps > 0.2; see Supplementary Results).
Furthermore, this effect could not be attributed to mood symptoms
(assessed by Beck Depression Inventory-II; Table S6) or impulsivity ten-
dencies (assessed by Barratt Impulsivity Scale) commonly associated with
addiction (Table S7).

These findings collectively indicate that the larger online sample
replicated key behavioral and computational findings observed in the in-
person study, thereby further confirming aberrant forward thinking in
smokers across a wide range of severity.

Smokers showed aberrant encoding of forward thinking value in
the vmPFC
For the neural analyses, our primary focus was to examine neural activities
associated with the forward thinking value signal, found to be encoded by
the vmPFC in non-smokers1. Thus, we initially conducted ROI analysis
using beta coefficients extracted from an independent ROI of the vmPFC
[−2, 50, −2]23 (Fig. 5a). This analysis revealed that vmPFC activations
related to total choice value were significantly greater for non-smokers
(parameter estimate: 0.347 ± 1.05) compared to smokers (parameter esti-
mate:−0.749 ± 2.00; two-sample t(40) =−2.31, p = 0.013;Cohen’sd = 0.69;
Fig. 5b).Whole-brain analysis (Fig. 5c) further substantiated this finding, as
even afterwhole-brain correction, BOLDresponses in the vmPFCremained
significantly higher for non-smokers compared to smokers (PFDR < 0.05,

Fig. 5 | Smokers show unusual ventromedial pre-
frontal cortex (vmPFC) and midbrain activity
while computing forward projected choice values
and norm prediction errors, respectively.
a vmPFC ROI coefficient [−2, 50, −2] was selected
from an independent study23 and extracted from an
8-mm radius sphere for estimated choice values
from the 2-step forward thinking model in the
controllable condition of the task (PFDR < 0.05,
k > 50). b vmPFC coefficients were significantly
greater for non-smokers (0.347 ± 1.05) compared to
smokers (−0.749 ± 2.00; t(40) =−2.31, p = 0.013;
Cohen’s d = 0.69). Error bars indicate SEM. c One-
way between-subject ANOVA test for the whole-
brain map further revealed that BOLD responses in
the vmPFC is greater for non-smokers compared to
smokers (PFDR < 0.05 and k > 50). d The midbrain
ROI coefficient [−4, −26, −11], covering the sub-
stantia nigra (SN) and ventral tegmental area
(VTA), were selected from an independent study27

and extracted for norm prediction errors from the
2-step forward thinking model in the controllable
condition of the task. e SN/VTA coefficients were
significantly greater for non-smokers (0.302 ± 1.10)
compared to smokers (−0.306 ± 1.04; t(40) =−1.80,
p = 0.040; Cohen’s d = 0.57). Error bars indicate
SEM. f One-way between-subject ANOVA test for
the whole-brain map further revealed that neural
responses to norm prediction errors in the midbrain
was greater for non-smokers compared to smokers
(PFDR < 0.05 and k > 50). For figure source data refer
to (Supplementary Data 1).
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k > 50). Overall, these results indicate aberrant neural encoding for the
computation of FT values in the vmPFC in smokers.

Reduced midbrain tracking of norm prediction errors (nPEs) in
smokers
We additionally evaluated nPEs encoding, given prior evidence of altered
learning in smokers24 and that role of nPEs norm updating within this task.
Norm prediction errors, defined as the difference between the actual social
(i.e. proposed offer) and one’s expectation (i.e. internal norms). Based on
previous research25,26 implicating the of mesolimbic structures (e.g., mid-
brain) in reward-based learning, we extracted neural signals tracking nPEs
using an independent ROI of midbrain [4, −26, −11] (Fig. 5d) encom-
passing regions of the ventral tegmental area and substantia nigra27. We
found that while nPEs positively scaled with midbrain activity in non-
smokers (parameter estimate: 0.302 ± 1.10), this relationship was inversed
in smokers (parameter estimate:−0.306 ± 1.04; two-sample t(40) =−1.80,
p = 0.040;Cohen’sd = 0.57; Fig. 5e).Whole brain analysis further confirmed
this significant groupdifference, with smokers exhibiting reduced activation
compared to non-smokers in midbrain activity associated with nPEs
(Fig. 5f; PFDR < 0.05 and k > 50). Collectively, these results are consistent
with previous findings indicating prediction error encoding deficits in
smokers and extend beyond previous findings by elucidating how nicotine
addiction is also associated with unusual updating of information in the
context of dynamic social interactions28–30.

Discussion
Social controllability, the ability to exert control during social interactions, is
crucial for behavioral adaptability. Previous research suggests that accu-
rately simulating the impact of one’s actions on future states is crucial for
exerting social influence, a process subserved by a vmPFC circuit1,31. Here,
we examined how neural computation of social controllability might be
altered in nicotine addiction. Our main finding suggested that, in a con-
trollable social environment, smokers underestimated the downstream
influence of their current choices and thus, failed to exploit the controll-
ability of their social interactions. These behavioral and computational
findings were replicated in an independent online sample of smokers and
non-smokers. Neurally, smokers exhibited reduced encoding of forward
thinking values in the vmPFC and reduced tracking of norm prediction
errors in themidbrain.Collectively, these results suggest that social cognitive
challenges in addictionmight be associatedwith complex decisionprocesses
involving future-oriented thinking.

Previous work has often focused on how individuals with Substance
Use Disorder (SUD) exert control over motor impulses or over actions
with immediate outcomes, identifying reduced cognitive control and
high impulsivity levels in these individuals32–35. Based on this body of
literature, one might expect that smokers would exhibit a reduced
planning horizon as suggested by previous computational work6,36.
However, formal model comparison in our study showed that smokers
engaged a similar 2-step forward thinking model as non-smoking con-
trols yet underestimated the influence of their actions on future states
(lower δ value) compared to non-smokers. This interpretation is con-
sistent with the participants’ subjective assessment of controllability in
the game, wherein smokers indicated they perceived future offers as
being less affected by their actions, compared to non-smokers. These
findings support the notion that it is maladaptive for an agent to infer
that they have less impact on the future than they actually do, as it may
lead to missed exploitable opportunities and failure to avoid negative
future consequences37. Although no punishment was introduced as
outcome in our study design, our work provides a computational fra-
mework and paradigm that could be used by future research to examine
mental simulation of future negative consequences. It also remains to be
investigated whether the findings of smokers’ underestimation of their
influence is associated with a mismatch between available cognitive
resources and environmental complexity18,19.

Our finding aligns with and provides a computational explanation
for the observed greater temporal discounting of future rewards in SUD7–9,
as well as findings suggesting that cognitive strategies involving delib-
eration and mental imagery of future events can reduce temporal dis-
counting and cigarette consumption38. Although the temporal
discounting parameter was fixed in our model setup due to technical
considerations, our study expands this literature by showing that future-
oriented valuation of one’s own agency (i.e., calculating the impact of one’s
action on future events) is altered in smokers. This disruption may play a
key role in their altered estimation of future values, contributing to the
temporal discounting effect. These insights introduce new avenues for
intervention, as an accurate prediction of how current actions impact
future outcomes may help individuals with SUD reevaluate drug-related
choices.

The cognitive deficit in forward thinking observed in smokers was
corroborated by our neural finding of reduced activity in the vmPFC in
tracking projected total choice value in this group. The vmPFC has been
heavily implicated in both addiction39–41 and value-based decision-
making1,29,42,43. Specifically, decreased vmPFC activity has been associated
with a reducedpreference for delayed rewards and impairments in valuation
processes44–46. In both occasional and nicotine-dependent smokers, activity
in the mPFC is associated with decisions to purchase or consume
cigarettes47. Here, we observed that vmPFC activity was in fact antic-
orrelated with projected total values in smokers, deviating from the positive
association between the two measures observed in non-smokers. This
finding, along with past research, demonstrates that deficit in the vmPFC is
associated with suboptimal decision-making in nicotine addiction. Our
result also expands beyond previous work by demonstrating that aberrant
neural activity in the vmPFC is detrimental to not only value representation
but also future-oriented, model-based planning. This finding is consistent
withmore recentworkhighlighting the role of vmPFC in representing states
and task structure20,48.

We also found aberrant neural tracking of norm prediction errors in
the midbrain in smokers. Norm prediction errors, defined as the difference
between the actual social signal (i.e., proposed offer) and one’s expectation
(i.e., internal norms), allows an agent to flexibly adapt to a changing social
environment where norms could fluctuate. Previously, activities in mid-
brain structures – including the substantia nigra and ventral tegmental area-
have been linked to social norm updating and decision-making during the
ultimatum game49. Existing work has also indicated altered non-social
reward prediction error encoding in individuals with addiction30,50. Hence,
we extend both lines of previous work by suggesting that addiction is also
linked to neural deficits in the midbrain during aberrant norm updating in
complex social environments.

Finally, despite the acknowledgment of the importanceof social factors
in addiction51, very little empirical evidence exists that explain how social
cognition is impacted innicotine-dependentparticipants at either theneural
or the computational level. In one study, Chung and colleagues used a peer
influence paradigm and fMRI21 in adolescents; they found that substance
naïve teens showed enhancedvmPFCactivations towards safe choicesmade
by peers, compared to teens who had used substances52. This result suggests
that substance use might be associated with reduced ability to distinguish
benevolent vs.malevolent social signals. In this sense, ourwork expands our
knowledge about the social brain in SUD in suggesting that in addition to
biased social perception, impaired social learning and inability to exert
control during interpersonal interactions are also features of SUD.

Limitations of the current study include a small sample size and low
representationof females in the fMRI studydue to sex imbalances associated
with nicotine addiction53,54. As such, further larger-scale studies are needed
to address the potential sex differences in nicotine addiction-related neural
mechanisms and to provide more conclusive insights. Furthermore,
although we were able to demonstrate group differences between smokers
and controls, we were not able to carry out the planned analysis on how
craving status might affect social controllability computations, as our
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attempt of instructing smokers to stay abstinent overnight failed in the
experiment (see Methods). Future studies may investigate the relationship
betweendeprivation level and social decision-makingbyusing experimental
designs that can more effectively vary participants’ abstinence and craving
levels. Lastly, while participants were informed that they were playing with
simulated players, we did not track their beliefs about the “humanness” of
the other players. Future work could explicitly measure such belief and
examine how it might affect participants’ social choices.

In conclusion, our findings suggest that under-estimation of the future
consequences of their choices may be a key feature of nicotine-dependent
humans and contribute to their inability to exert control in social settings.
This serves as a plausible neurocomputational account for the social cog-
nitive deficits observed in this population.

Methods
Participants
In-person fMRI study. The fMRI study was approved by the Institu-
tional Review Board (IRB) of the University of Texas at Dallas and the
University of the Texas Southwestern Medical Center (where SN, MH,
VFG, and XG worked and collected this dataset). All participants were
recruited from the Dallas-Fort Worth metropolitan area through
advertisements and flyers. All participants provided written informed
consent before participating in the study andwere compensated based on
time and task performance (i.e., the outcome of a randomly drawn trial).
All ethical regulations relevant to human research participants were
followed. The criteria for in-person smoker recruitment included parti-
cipants who smoked more than 10 cigarettes daily for at least a year and
were fluent in English. All candidate participants underwent Structured
Clinical Interview for DSM Disorders (SCID) – substance use disorder
(SUD)module. For all participants, the exclusion criteria were anymajor
medical, neurological, or psychiatric conditions; any incompatibilitywith
MRI safety (e.g., metal implants); and dependence on substances other
than nicotine and alcohol (smokers) or any substance dependance (non-
smokers). In the final sample, smokers had a mean daily consumption of
18 cigarettes, and mean baseline carbon monoxide (CO) level of 15.59
(SD: 8.89) parts per million (ppm). A total of 25 non-smoking and 17
nicotine-smoking participants were included in the final fMRI sample
(Table S1). The fMRI study was pre-registered as part of a larger fMRI
study examining decision-making in smokers (https://osf.io/m9cws).

Online study. The online study was approved by the IRB of the Icahn
School of Medicine at Mount Sinai.We recruited U.S.-based participants
from the online participant pool Prolific (http://prolific.co). Here, we
included a wider range of smokers (smoked at least one cigarette per
week) to examine if findings from the in-person sample whose nicotine
addiction was severe might generalize to a more representative sample of
smokers with a wider range of nicotine dependence levels. Smokers with
self-reported medical or psychiatric diagnosis were excluded. The final
online smoker sample (n = 72) had amean daily tobacco consumption of
9.34 and had a mean craving score of 64.51 out of 100. All participants
provided online consent before participating in the study and were
compensated for their time. The criteria for online non-smokers included
zero tobacco consumption, no cravings for tobacco in the past week, and
no major medical or psychiatric diagnoses. A total of 147 online parti-
cipantsmet these criteria for non-smokers and werematched with online
smokers for sex, age, education, and handedness (Table S2). This online
studywas pre-registered as a subcomponent of a larger longitudinal study
investigating social decision-making (https://osf.io/8s5mu).

Study procedure
For the in-person study, all candidate participants underwent Structured
Clinical Interview for DSM Disorders (SCID) – substance use disorder
module, which was used to determine if they had nicotine addiction and/or
other comorbid substanceusedisorder. For smokers,we alsomeasured their
exhaled CO levels using a smokerylzer (Covita Smokerlyzer) and

administered a battery of questionnaires on their demographics and
smoking habits. Specifically, the Shiffman-Jarvik Withdrawal Scale55 was
used to assess participants’ craving and withdrawal symptoms. Non-
smokers completed a survey of their demographics. Participants were then
asked to withdraw from smoking 12 h prior to the next scheduled visit.
However, CO levels measured on the day of scanning suggested that smo-
kers were likely to have smoked regardless and failed to stay abstinent as
instructed. As such, we were unable to conduct planned analyses on how
craving affected social controllability per our preregistration.

Participants played a two-party exchange task in a Phillips 3T MRI. A
Phillips 3TMRI scannerwasused toobtain anatomical and functional images
of participants completing the task. High-resolution structural images were
collected using a multi-echo MP-RAGE sequence with the following para-
meters: TR/TE/TI = 2300/2.74/900ms,flip angle = 8°, FOV= 256 × 256mm,
Slab thickness = 176, Voxel size = 1 × 1 × 1mm, Number of echos = 4, Pixel
bandwidth = 650Hz, Total scan time = 6min. These structural scans were
used for alignmemnt of images. fMRI scans were obtained by setting repeti-
tion time (TR) to 2000ms, echo time (TE) to 25ms, voxel size to 3.4mm×
3.4mm×4.0mm, flip angle to 90°, and slice number to 37.

For the online study, after participants consented for research, they
completed a battery of surveys that assessed demographics, mental health,
and substance use as well as the social controllability task, as described below.

Social controllability task
All participants completed a two-party exchange task1 adapted from the
ultimatumgame inwhich simulatedpartners proposedhow to divide a sum
of $20 and participants decided whether to accept or reject the offer. If the
participant accepted the offer, both the responder (participant) and the
proposer received the proposed amount as is. If the participant rejected the
offer, neither party received a reward.Offerswere always disadvantageous to
the participant/responder (<= $9) and the initial offer was always $5
(“indifference point”).

Importantly,wemodified the game so that participants could influence
their partner’s futuremonetary proposal using their current actions1 (Fig. 1).
Specifically, if participants rejected the current offer, the next offer would
increase by $0, $1 or $2 with a 1/3 probability for each option; and if they
accepted the current offer, the next onewoulddecrease by $0, $1 or $2with a
1/3 probability for each (Fig. 1b). We also included a typical ultimatum
game block in which the offer was randomly drawn from normal dis-
tribution with a mean of $5 and participants’ current choice to accept or
reject the offer had no influence over the future offers (“uncontrollable”
condition; see Supplementary Fig. S1).

Participants were told that they were playing with members of two
different teams and were not given explicit information regarding how the
two teamsmight differ. Instead, they were instructed that they “may ormay
not have influence over the offers made” by the team. The order of the
conditions was counterbalanced. The original task with non-smokers
included 40 trials per condition and smokers played a slightly shorter ver-
sion of 30 trials thatwere shown to generate similar results1. Nevertheless, to
match the task length between smokers and non-smokers, only the first 30
trials from non-smoker data were included in the analyses. The number of
trials of the gamewasunknown to theparticipant.After completing the task,
participants were asked to rate their perceived influence over their partners’
offers at the end of each condition using a scale from 0 to 100 (“perceived
controllability). One outcome from all trials was randomly selected as a
bonus payment to incentivize participants in both the fMRI and the online
sample.The social controllability taskwaspre-registered as a subcomponent
of a larger project investigating value-based decision making in nicotine
addiction (https://osf.io/m9cws).

Computational modeling of choice behavior
The forward thinking (FT) value, or mentally projected total value of an
action taken at the ith trial, vjai , ðai; acceptance or rejectionÞ is estimated in
an n-step forward thinking model, which considers various planning hor-
izons given hypothetical future actions. Here the FT value vjai takes into
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account both current and future utilities of a choice.

vjai ¼ U ri; f i
� �þ

Xn

j¼1

γj ×U Êðriþjjai; aiþ1; . . . aiþjÞ; f i
� �

Current utility U ri; f i
� �

is a function of reward ri and internal norm f i
at the ith trial, defined as follows:

U ri; f i
� � ¼ ri � αmax f i � ri; 0

� �
if ri > 0 ðacceptedÞ

0 if ri ¼ 0 ðrejectedÞ

( )

The degree of aversion or sensitivity to normviolation at the individual
level is capturedbyα (0≤ α≤ 1)56. Internal norm f i is ameasureof subjective
norm, or one’s trial-by-trial expectation of the offer. Here, we assumed that
participants update their internal representation of the norm from trial to
trial using the Rescorla-Wagner learning model based on our previous
work57 and that the initial norm f0 varies from individual to individualwith a
range of [$0, $20]43.

fi ¼ fi�1 þ ε si � fi�1

� �

Here the learning rate ε (0 ≤ ε ≤ 1) represents how fast one updates
expectation of the offer based on the norm prediction error (nPE), defined
as si � fi�1

� �
.

Future utility is described as the summed utility of the mentally
simulated future actions a discounted by γ, the temporal discounting factor.
Similar to our previouswork, wefixedγ at 0.8, themean valuemeasured in a
larger cohort to control for collinearitywith our parameter of interest δ1. Ê is
the subject’s mentally simulated future split. Importantly, our parameter of
interest δ represents how much (in dollar amount) a participant thought
their action changed the partner’s proposed split at a future trial, ak, in the
following manner:

Ê skþ1

� � ¼ sk þ δ if ak or ak ¼ 0

maxðsk � δ; 1Þ if ak or ak ¼ 1

�

ak ¼
1 if U bE sk

� �
; f k

� �
> 0

0 otherwise

(

Critically, δ represents a subject’s mentally estimated influence of
their current action on the subsequent offer (in dollar amount, ranging
from�$2≤ δ ≤ $2)). The simulated future action ak of accepting an offer
is determined by the subjective utility of the following rewards
U Ê sk

� �
; f k

� �
. In the event that the simulated chosen action is to accept

the offer (ak ¼ 1), the hypothetical next offer Ê skþ1

� �
decreases by the

estimated influence parameter δ (�$2 ≤ δ ≤ $2). In the event that the
simulated chosen action is to reject the offer (ak ¼ 0) the hypothetical
next offer Ê skþ1

� �
increases by δ. Here δ is applied symmetrically to

acceptance and rejection, also similar to our previous work1,58.
Action selection was based on the difference between the total pro-

jected value of accepting an offer (vjai¼1) and the total projected value of
rejecting an offer (vjai¼0).

ΔQi ¼ vjai¼1 � vjai¼0

ΔQi in turn influences the probability of choosing an action in a
softmax function:

Pi ai ¼ 1
� � ¼ eβΔQi

1þ eβΔQi

Behavioral responses were fitted into five models, each incorporating
different planning horizons: 0-step, 1-step, 2-step, 3-step, 4-step. The 0-step
model represents a standalone norm learning model and excludes any
forward thinking. The other fourmodels assume that an agent simulates the
value of an action by considering both current and future values, all based
upon the estimated levels of controllability of the social environment. We
additionally fitted a model-free RL model which only considers cached
values (see Supplementary Information for details). The best fitting model
was chosen based on both Deviation Information Criteria (DIC) (where a
smaller index indicates both higher model evidence and lower model
complexity; see Table S3) and the recoverability of model parameters (see
Tables S4, S5).

Individual choices frommiddle trials (trials 6–25) were used formodel
fitting. The first 5 trials were excluded from all participants’ data to allow
behavior to stabilize after participants explored the contingencies of the task
in these initial trials. The last 5 trials from the smokers’ responses were also
excluded given that there was less incentive to reject offers closer to the end
of the game39. Finally, the last 15 trials from the non-smokers’ responses
were excluded in order to keep a consistent trial number with the smokers
during analysis. The computational models were also pre-registered as a
subset of the project examining value-based decision making in nicotine
addiction (https://osf.io/m9cws).

Statistics and reproducibility
Our analyses focused on group comparisons between smokers and non-
smokers, per our pre-registrations. For statistical tests, we first examined if
our key measures and parameters of interest met the criteria for standard
parametric tests. We found that the total rejection rate for online non-
smoker participants (n = 147) exhibited a Kolmogrov–Smirnov (K–S) test
statistic (D) of 0.20015 where p is 0.0001, indicating strong evidence that
rejection rates were not normally distributed. Similarly, parameter values
from themodel also deviate froma normal distribution, as demonstrated by
delta for all online participants with a K–S test statistic (D) of 0.21002,
p < 0.00001. In light of this evidence aswell as the highly unbalanced sample
sizes of the online study, we used a non-parametric bootstrapping method
following previous work conducted with similar constraints43,59–61 to assess
the probability of observing a difference between two groups. Therefore, a
bootstrapping method was employed to compare all online parameters
between smokers and non-smokers, while a 2-sample t-test was used to
compare fMRI in-person parameters between the two groups.

The bootstrapping procedure was conducted with 10,000 iterations as
follows (e.g., the comparison between 72 smokers and 147 non-smokers):
(i) 72 participants were selected randomly as the surrogate smoker group,
fromthewhole groupof 219onlineparticipants includingboth smokers and
non-smokers; (ii) 147 participants were selected randomly as the surrogate
non-smoker group from the whole group of 219 participants; and (iii) the
two-tailed t-value of the difference between the two surrogate groups was
calculated. After 10,000 iterations, the distribution of the t-values was
obtained. The observed t-value (e.g., between smoker and non-smoker
groups) was then calculated and compared along the t distribution. If the
probability of obtaining the observed t-value along the permutated dis-
tributionof t-value is <5%(one tailed),we considered thedifferencebetween
the patient and control groups to be significant.

We applied additional general linear modeling to further explore the
effects of negative mood and impulsivity on the model estimated controll-
ability (Tables S6, S7). Similar regression approach is applied to explore the
effect of risk aversion on smokers and non-smokers’ choice behavior
measured as rejection rates (Tables S8, S9). Analyses were performed using
MATLAB (2020b)62, R 4.3.163, and RStudio 2023.6.0.4264. MATLAB was
used for data management. R and RStudio were used for data curation and
regression analysis using the lme4 package65.

For reproducibility, our focus was mainly twofold. First, we replicated
the key behavioral and computational findings in an independent group of
smokers and non-smokers recruited online, as described in previous
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sections. The replication sample wasmuch larger (n = 219 in total) than the
original fMRI group (n = 42) andmore heterogenous, yet still replicating all
major findings and confirming our original hypothesis. Second, we have
made our data and code publicly available through GitHub (https://github.
com/caromc03/Smoker-s-Forward-Thinking; also see Data and Code
Availability section below).

fMRI data analysis
The functional scanswere analyzedusing the statistical parametricmapping
software package (SPM12, Wellcome Department of Imaging Neu-
roscience; www.fil.ion.ucl.ac.uk/spm). First, we preprocessed the images by
implementing time correction, co-registration, and normalization with
resampled voxel size of 2mm× 2mm× 2mm and smoothing with an
8mm Gaussian kernel. After preprocessing, two general linear models
(GLMs) were constructed using SPM12 to examine the neural correlates of
(1) forward thinking value and (2) norm prediction errors (PEs). The fol-
lowing event regressors were included: (1) offer onset, (2) choice submis-
sion, (3) outcome onset, and (4) perceived controllability rating.

Importantly, we specified a parametric modulator of FT value, the
forward projected choice value from the 2-step model, normalized at the
individual level, at the onset of choice submission. A separate GLM was
conducted in which the learning signal nPE replaced the total choice values
as the parametric regressor. In both GLMs, six motion parameters were
included as covariates. Following individual model estimation at the 1st
(subject) level, contrast images representing either total choice value or
norm PE were entered into an ANOVA test to compare neural differences
between smokers and non-smokers (PFDR < 0.05 and k > 50).

We used the MarsBar toolbox66 to conduct region of interest (ROI)
analyses. Beta values representing choice value-related activations were
extracted from an 8-mm radius sphere of the vmPFC using coordinates
[−2, 50, −2] from an independent study23. Beta values representing
norm PE were extracted at a coordinate of the midbrain [−4,−26,−11]
on an 8-mm radius sphere, from an independent study27. The ROI in the
analyses were specified in the pre-registered study (https://osf.
io/m9cws).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All source data used for this manuscript can be accessed in Supplementary
Data 1 and in the following link: https://github.com/caromc03/Smoker-s-
Forward-Thinking.

Code availability
All code used for this manuscript can be accessed here: https://github.com/
caromc03/Smoker-s-Forward-Thinking.
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