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A B S T R A C T

Delamination is a prevalent issue in carbon fiber-reinforced plastic (CFRP) drilling, significantly compromising
the mechanical properties of the material. Considering that delamination can impact the long-term durability
of the final products, it is essential for operators to promptly identify it. This paper proposes a machined
surface image generation model, called Sensor2Image, that employs time-series force sensor data as input
and generates drilled-hole surface images as output. Sensor2Image first encodes the force sensor data into
images using the Gramian angular field (GAF) method. Subsequently, it applies an image-to-image translation
technique to generate the final machined surface images. The proposed model was trained and evaluated
using experimental data gathered from drilling CFRP specimens under an industrial robot machining system.
The results demonstrated the versatility of the proposed model for practical applications, regardless of the
delamination factor. The proposed method offers significant advantages over existing methods through its
intuitive visual representation approach. It facilitates the visual inspection of delamination while enabling
surface quality analysis of the drilled hole and identification of defects or irregularities that may impact
the mechanical properties of the material. The proposed approach can enhance the efficiency and reliability
of industrial processes, particularly those involving complex delamination factors. It is a valuable tool for
optimizing the CFRP drilling process and enhancing drilled-hole quality in a user-friendly manner.
1. Introduction

Carbon fiber-reinforced plastic (CFRP) is a widely used material
in the aerospace and automotive industries owing to its exceptional
strength-to-weight ratio and corrosion resistance (Chen et al., 2023).
These qualities render CFRP ideal for high-demand applications, such
as aircraft components and high-performance vehicles (Pérez-Salinas
et al., 2023; Sun et al., 2021). However, the anisotropic nature of
CFRP poses significant challenges in machining processes, particularly
in drilling. This material is susceptible to various defects, including
delamination, which can detrimentally affect the structural integrity
and longevity of the final products (Xu et al., 2023). However, the chal-
lenges posed by CFRP drilling extend beyond the physical properties of
the material. The high precision required for aerospace and automotive
applications implies that even minor defects can significantly affect
safety and performance (Ozkan et al., 2020). Moreover, the increasing
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complexity of designs necessitates more intricate drilling patterns, in-
creasing the complexity of CFRP machining. This complexity further
increases the risk of defects and necessitates advanced methods for
monitoring and quality control during drilling process (Geier et al.,
2023). Therefore, predicting delamination during CFRP drilling oper-
ations is crucial for enabling workers in taking appropriate measures,
thereby enhancing production efficiency and ensuring the reliability of
the final product.

Various methods have been employed to predict CFRP delamination
during the drilling process. These include theoretical analysis, finite
element (FE) simulation, and statistical approaches. Theoretical anal-
ysis involves the development of analytical mechanical models. For
instance, Ismail et al. (2017) proposed an analytical thermo-mechanical
model considering drill characteristics, such as chisel edge load and
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Nomenclature

Acronyms

cGAN conditional Generative Adversarial Net-
work

GAF Gramian Angular Field
GASF Gramian Angular Summation Field
GADF Gramian Angular Difference Field
ReLU Rectified Linear Unit
LS Least Square
BCE Binary Cross Entropy
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
MSE Mean Squared Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
S2I Sensor2Image
GS-S2I Gramian Angular Summation Field-based

Sensor2Image
GD-S2I Gramian Angular Difference Field-based

Sensor2Image

Symbols

𝐺 Generator
𝐷 Discriminator
𝐹𝑑 One-dimensional conventional delamina-

tion factor
𝐹𝑎 Two-dimensional delamination factor
𝐹𝑑𝑎 Adjusted delamination factor
𝐷𝑚𝑎𝑥 Maximum diameter of the damage zone
𝐷0 Hole diameter
𝐴𝑑 Quotient of the delaminated area
𝐴𝑛𝑜𝑟𝑚 Hole area
𝐴𝑚𝑎𝑥 Area associated with the maximum diame-

ter of the damage zone
𝑁 Number of samples
 Sensor-image pairs
′ Aligned image pairs
𝑠𝑖 Time-series sensory data
𝑥𝑖 Image transformed from sensory data 𝑠𝑖
𝑦𝑖 Ground truth machined surface image
�̂�𝑖 Generated machined surface image
𝑑𝑖 Delamination factor on the ground truth

image
𝑑𝑖 Delamination factor on the generated im-

age

point angle, to predict the critical thrust force and feed rate. Girot et al.
(2017) established correlations between cutting forces and delamina-
tion, focusing on the loading on the drill cutting edge. Further, Su et al.
(2019) developed an analytical model based on the classical bending
theory of beams and linear elastic fracture mechanics to predict the
exit-delamination morphology of CFRP drilling. FE simulation has been
extensively used in machining to create computational models that
predict the mechanical behavior of workpieces. Feito et al. (2014)
employed FE analysis to anticipate the extent and occurrence of de-
lamination during simulated drilling processes. Sugita et al. (2019)
utilized a high-fidelity FE model to simulate the drilling process and
2

predict delamination and burr formation in CFRP. The insights gained
from their study can be used to design drill tools that minimize defects
during CFRP drilling. Similarly, Seo et al. (2021) used cohesive zone
models to predict the delamination factor while considering cutting and
backup plate conditions. Further, several statistical approaches have
been applied to predict delamination in CFRP drilling. Davim and Reis
(2003) established correlations between cutting parameters and feed
rate with a delamination factor using multiple linear regression. Kr-
ishnamoorthy et al. (2015) developed a quadratic mathematical model
to predict the one-dimensional delamination factor. They employed
analysis of variance (ANOVA) to statistically evaluate the model’s
adequacy and found a strong correlation between the input parameters
and the output response. In addition, Zhang and Xu (2020) achieved
accurate and stable prediction performance by using a Gaussian process
regression model for predicting the delamination factor during drilling.
They further utilized the Taguchi method to identify the statistical
correlations between process parameters and the final quality of the
workpiece.

The adoption of data-driven machine learning and deep learning
techniques in the manufacturing sector has garnered significant at-
tention in recent years (Kim et al., 2023a, 2023b). Numerous studies
have focused on data-driven approaches that use sensory data collected
during the drilling process to predict hole quality (Choi et al., 2024;
Norcahyo et al., 2019; Volety & Mani, 2023; Yi et al., 2019). These
methods typically involve predicting delamination assessment factors,
such as the conventional one-dimensional (𝐹𝑑), two-dimensional (𝐹𝑎),
and adjusted (𝐹𝑑𝑎) delamination factors. These factors were derived
from image-processing techniques applied to hole surfaces acquired
using optical microscopes. Although these approaches have shown
promise, their ability to simultaneously predict multiple delamination
factors is limited. This limitation poses a significant challenge because
the specific factors required for a given operation may vary depending
on its purpose. Previous studies predominantly predicted a single de-
lamination factor (e.g., 𝐹𝑑) at a time, lacking simultaneous predictions
of other relevant factors (e.g., 𝐹𝑎 or 𝐹𝑑𝑎) despite their significance. Even
when multiple delamination factors were simultaneously predicted, the
number of factors considered was limited. This makes the predictions
infeasible for application across all drilling processes. This gap in pre-
dictive capabilities highlights the necessity for a more comprehensive
and versatile model that can adapt to the varied demands of drilling
process and deliver multifaceted predictions.

A comprehensive approach encompassing machine learning and
suitable preprocessing techniques is necessary to address this challenge
in CFRP drilling. The application of machine learning to time-series
sensor data in the manufacturing industry has been extensively re-
searched. A key component of this approach involves preprocessing
methods critical for enhancing data quality before their application
in machine-learning models. These methods include statistical feature
extraction (Sen et al., 2023), time-frequency domain analysis (Liu
et al., 2020), and dimensionality reduction (Nadir et al., 2020). Image
transformation has been employed in several applications to enhance
the analysis and interpretation of time-series sensor data. Through the
conversion of sensor data into visual representations, these studies
leverage the advanced feature extraction and analysis capabilities of
machine-learning algorithms, resulting in enhanced performance and
effectiveness across diverse tasks. For example, Ciecieląg et al. (2021)
utilized image-based techniques to detect delamination in composite
materials, including CFRP, during the drilling process. They converted
the time series cutting force data, recorded throughout the drilling
operation, into recurrence plot (RP) images. Chen et al. (2022) intro-
duced an integrated learning method based on the gramian angular
field (GAF) and optimal feature channel adaptive selection for rolling
bearing fault diagnosis, demonstrating an improved classification per-
formance compared with state-of-the-art approaches. These studies
highlight the growing interest in converting sensor data into images
for enhanced analysis and diagnosis of defect (Jiang & Chen, 2023; Li

et al., 2024; Wang et al., 2023).
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Image-to-image translation, a concept gaining prominence in com-
puter vision, enables the transformation of input images into desired
output images using deep-learning techniques. Image-to-image trans-
lation has been increasingly employed in the manufacturing industry
for quality control, predictive maintenance, virtual prototyping, and
enhanced process visualization (Adachi et al., 2020; Déau et al., 2023;
Huang et al., 2021). Isola et al. (2017) presented a significant ad-
vancement in this approach. They introduced the pix2pix model, a
foundational approach for paired image-to-image translation tasks. This
model is anchored in a conditional generative adversarial network
(cGAN) framework, enabling the generation of realistic images from
input–output pairs. Subsequent research has led to a series of inno-
vative developments based on this foundation. Among these is the
pix2pixHD model introduced by Park et al. (2019), which extends the
capabilities of the original pix2pix framework. Pix2pixHD enhances
the photorealism and resolution of generated images, supporting high-
definition outputs up to 2048 × 1024 resolution. This advancement
significantly improves the visual quality and applicability of the image
translation in more demanding scenarios. Another notable contribution
is the SPADE, proposed by Wang et al. (2018). This model inte-
grates spatially-adaptive normalization layers, significantly enhancing
the quality of synthesized images. Its approach excels at handling
diverse and complex image contents, making it a versatile tool in
image-to-image translation tasks. Further contributing to the field is
ASAPNet by Shaham et al. (2021), distinguished as a lightweight yet
efficient network. It is specifically designed to facilitate rapid and
high-resolution image-to-image translation tasks, addressing speed and
efficiency requirements in real-time and resource-constrained applica-
tions.

This paper proposes a novel sensor-to-image generation model
called Sensor2Image, which translates force sensor data into machined
surface images during the CFRP drilling process. In contrast to previous
studies that focused solely on predicting a single delamination factor,
the proposed approach generates complete surface images, capturing
the intricate details and characteristics of the drilled holes. This enables
extraction and analysis of multiple factors, addressing the diverse
requirements and variations encountered in drilling operations. By
generating images rather than estimating a predefined delamination
value, the proposed approach enhances insights into the drilling pro-
cess, facilitates visual inspection, and analyzes potential delamination
areas.

The primary contributions of this work to the literature are as
follows:

1. This work introduces a novel hole surface image generation
model that utilizes force sensor data, employing an image-to-
image translation approach, to effectively predict the delamina-
tion potential of drilled CFRP surfaces. This advancement im-
proves the delamination prediction accuracy and adapts flexibly
to diverse drilling process requirements.

2. The proposed model provides an intuitive and user-friendly
approach for delamination inspection by leveraging the gen-
erated images of the drilled-hole surfaces. This method sig-
nificantly simplifies delamination assessment while delivering
superior performance.

The remainder of this paper is organized as follows. Section 2
outlines the proposed method, including the preprocessing techniques,
model architecture, and theoretical descriptions. Section 3 presents the
experimental settings, including the data collection process. Section 4
quantitatively and qualitatively evaluates the performance of the pro-
posed model and compares it with existing methods. Finally, Section 5
concludes the paper by summarizing the contributions of this work and
3

highlighting future research directions.
2. Methods

This work aims to develop a method for generating machined
surface images of CFRP holes based on time-series force sensor data
collected during the drilling process. To achieve this goal, the pro-
posed Sensor2Image is divided into two stages. The first stage involves
transforming the sensory data into image representations. The second
stage uses an image-to-image translation technique to generate the final
output image of the machined-hole surface. Specifically, the time-series
force sensor data are transformed into an image representation using
polar encoding transformation, which is then fed into the image-to-
image translation model to generate the machined surface image. The
transformed input data are used to train the model to generate the
desired output image. Fig. 1 shows the Sensor2Image structure.

2.1. Sensor2Image

Using the sensor-image data pairs  =
{

𝑠𝑖, 𝑦𝑖
}𝑁
𝑖=1, where 𝑠𝑖 is a force

sensor and 𝑦𝑖 is the machined surface image, the model aims to map a
source image transformed from the sensor data and a machined surface
image. This model is based on the pix2pix framework and employs
an adversarial learning approach. During training, the model aims to
minimize adversarial loss and 𝐿1 loss between the source and target
images. By optimizing the combined loss function, Sensor2Image learns
to generate source images that accurately represent the corresponding
machined surface images.

2.2. Sensory data to image transformation

The input for Sensor2Image is prepared using the GAF proposed
by Wang and Oates (2015). GAF is used to encode time-series sensor
data into images that preserve temporal dependency. This framework
transforms a time series into a polar coordinate system, where each
point in the time-series signal is mapped to a point on a unit circle.
The outer product of each pair of points on the circle is calculated,
followed by the cosine of the resulting product summation.

The resulting matrix is used for image representation. The time-
series data  =

{

𝑠𝑖
}𝑇
𝑖=1 then undergoes a min–max scaling transfor-

mation (Patro & Sahu, 2015) to ensure that all values are within the
range of [−1, 1].

�̃�𝑖1 =

(

𝑠𝑖 − max(𝑆) +
(

𝑠𝑖 − min(𝑆)
)

max(𝑆) − min(𝑆)
(1)

The rescaled time series is encoded as the angular cosine and the
timestamp as the radius, thereby preserving the absolute temporal re-
lations in the polar coordinate system (Wang et al., 2022), as calculated
using (2). The corresponding values warp between different angular
points on the spanning circles as time increases. This encoding map
produces a unique result in a polar coordinate system with a unique
inverse map given a time series.
{

𝜙 = arccos
(

�̃�𝑖
)

,−1 ≤ �̃�𝑖 ≤ 1, �̃�𝑖 ∈ �̃�
𝑟𝑖 =

𝑡𝑖
𝑁 , 𝑡𝑖 ∈ N , (2)

where 𝑡𝑖 indicates the time stamp and 𝑁 is used to control the span of
the polar coordinate system.

GAF can be computed using two different Gramian matrix calcula-
tion methods: Gramian Angular Summation Field (GASF) and Gramian
Angular Difference Field (GADF). The GASF is derived from the GAF
representation by taking the sum of each pair of values in the GAF
matrix, resulting in a new matrix with the same dimensions as the GAF
matrix. The GASF matrix XGASF represents the summation of the angles
between each pair of time points in the time series.

XGASF =

⎡

⎢

⎢

⎢

⎢

⎣

cos
(

𝜙1 + 𝜙1
)

⋯ cos
(

𝜙1 + 𝜙𝑛
)

cos
(

𝜙2 + 𝜙1
)

⋯ cos
(

𝜙2 + 𝜙𝑛
)

⋮ ⋱ ⋮
cos

(

𝜙𝑛 + 𝜙1
)

⋯ cos
(

𝜙𝑛 + 𝜙𝑛
)

⎤

⎥

⎥

⎥

⎥

⎦

′
√

′2
√

2

(3)
= �̃� ⋅ �̃� − 𝐼 − �̃� ⋅ 𝐼 − �̃�
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Fig. 1. Overall structure of Sensor2Image.
where I denotes the unit vector. After transformation to the polar
coordinate system, the time series at each time step is considered
as a one-dimensional (1D) metric space. However, GADF takes the
difference between each pair of values in the GAF matrix, resulting in
a new matrix with the same dimensions as the GAF matrix. The GADF
matrix XGADF represents the difference in angles between each pair of
time points in the time series.

XGADF =

⎡

⎢

⎢

⎢

⎢

⎣

sin
(

𝜙1 − 𝜙1
)

⋯ sin
(

𝜙1 − 𝜙𝑛
)

sin
(

𝜙2 − 𝜙1
)

⋯ sin
(

𝜙2 − 𝜙𝑛
)

⋮ ⋱ ⋮
sin

(

𝜙𝑛 − 𝜙1
)

⋯ sin
(

𝜙𝑛 − ∅𝑛
)

⎤

⎥

⎥

⎥

⎥

⎦

=
√

𝐼 − �̃�′2 ⋅ �̃� − �̃�′ ⋅
√

𝐼 − �̃�2

(4)

2.3. Image-to-image translation for generating machined surfaces

The proposed Sensor2Image is an adaptation of the pix2pix scheme
specifically designed to address the challenges of generating machined
surface images during the CFRP drilling process. Pix2pix uses the cGAN
framework, which involves a generator and discriminator. The genera-
tor produces realistic images from the GAF image, which contains the
temporal dependency of the force sensor data. The discriminator distin-
guishes between real and generated images. This adversarial training
process encourages the generator to generate high-quality images that
are indistinguishable from the real images. By leveraging image-to-
image translation capabilities, the proposed model transforms specific
aspects of the input image to generate the desired machined surface
image. Image-to-image translation tasks can change one aspect of a
given image into another.

Mapping is learned using a set of training data, which may comprise
aligned image pairs ′ =

{

𝑥𝑖, 𝑦𝑖
}𝑁
𝑖=1, where an image translated from

sensory data 𝑥𝑗 ∈ 𝑋, a machined surface image 𝑦𝑗 ∈ 𝑌 , and 𝑁 is the
number of samples. The training set is resized and cropped to 256 × 256
pixels for a clear center-of-the-hole surface, the same size as that of the
source image. The images are then normalized to the [−1, 1] range.

The convolutional PatchGAN serves as a discriminator that effi-
ciently extracts receptive fields from the CNN architecture, allowing for
flexibility in image size and detailed feature discernment using patches.
This discriminator determines whether each image patch is real or
fake, as shown in Fig. 2. Each block in the discriminator comprises
convolutional layers, batch normalization, and a leaky rectified linear
unit (ReLU).

In this work, a notable modification to the standard pix2pix model
is the incorporation of the least-squares loss function for the dis-
criminator, diverging from the traditional binary cross entropy (BCE)
4

Fig. 2. Discriminator training. The discriminator learns to distinguish between gen-
erated and real machined surface images, conditioned on the input GAF image. (a)
The generator produces a machined surface image based on the input GAF image, and
the discriminator classifies it as fake. (b) The discriminator classifies the ground truth
machined surface image as real, given the corresponding input GAF image. Through
this process, the discriminator is trained to distinguish between generated and real
images, providing feedback to enhance the generator’s output quality.

loss. Inspired by the approach proposed by Mao et al. (2017), this
adaptation promotes a stable training process by addressing vanishing
gradient issues and encouraging smoother convergence. This reduces
the likelihood of mode collapse. In addition, this function provides a
more informative measure of the discriminator confidence. This results
in an improved discrimination capability and higher-quality generated
samples. By minimizing the distributional divergence, the least squares
(LS) loss function aligns with the broader objective of generating more
realistic outputs.

𝐿𝐷 = 1
2
E𝑥∼𝑝data

[

(𝐷(𝑥) − 1)2
]

+ 1
2
E𝑧∼𝑝𝑧

[

𝐷(𝐺(𝑧))2
]

(5)

The pix2pix generator is a modified U-Net comprising an encoder
and decoder with downsampling and upsampling blocks, respectively.
Each block in the encoder comprises convolutional layers, batch nor-
malization, and leaky ReLU. Each block in the decoder comprises a
transposed convolution for upsampling, batch normalization, dropout,
and ReLU for activation. Skip connections are incorporated in the early
stages to convey information between the encoder and decoder. This
enables the model to preserve fine-grained information by facilitating
the passage of relevant information from the encoder to the decoder.
Employing this architectural approach proved effective in preserving
structural coherence in the generated images. Fig. 3 shows the detailed
architectures of the generator and discriminator.

The generator is updated using a loss function that merges adver-
sarial and 𝐿1 losses. The adversarial loss ensures that the generator
model can produce images that appear authentic within the target
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Fig. 3. The architecture of the generator and the discriminator of Sensor2Image.

domain. The 𝐿1 loss serves as a regularization mechanism, enabling the
generator to yield images that plausibly translate the source image.

𝑐𝐺𝐴𝑁 (𝐺,𝐷) = E𝑥,𝑦[log𝐷(𝑥, 𝑦)] + E𝑥,𝑧[log(1 −𝐷(𝑥,𝐺(𝑥, 𝑧)))] (6)

𝐿1
(𝐺) = E𝑥,𝑦,𝑧

[

‖𝑦 − 𝐺(𝑥, 𝑧)‖1
]

(7)

A weight hyperparameter, 𝜆, adjusts the balance between the 𝐿1 loss
and adversarial losses. Adjusting 𝜆 values involves a trade-off between
image quality and fidelity. Decreasing the 𝜆 applied to the 𝐿1 loss
in the generator loss causes the generated outputs to exhibit more
diversity and creativity while potentially introducing more noise and
inconsistencies. Conversely, increasing the 𝜆 weight places a stronger
emphasis on exact alignment with the ground truth, resulting in gen-
erated images that closely match the target and reproduce fine details
more accurately.

𝐺∗ = argmin
𝐺

max
𝐷

𝑐𝐺𝐴𝑁 (𝐺,𝐷) + 𝜆𝐿1
(𝐺) (8)

3. Experiment

3.1. Experimental setup

The experiment used a robotic arm with up to six axes connected
to a spindle (HSD MT1055) using a rigid bracket. The machining
conditions and paths were set using the commercial software Master
Cam and Robot Master, respectively. A feed rate of 0.02 mm/rev and
rotational speed of 6000 RPM were used to ensure that the cutting
force did not exceed the 7 kg payload and cause severe vibrations.
Fig. 4 shows the experimental setup. The cutting force was measured
using a dynamometer at a sampling rate of 2000 Hz. The cutting
force sensor data used in this work was subjected to preprocessing,
as described in Choi et al. (2024). The data was processed using a
5 Hz low-pass filter and a moving average technique with a window
size of 0.5 s to eliminate noise. This reduced the influence of slight
vibrations in robot machining. Further, its charge amplifier and data
acquisition system measured and recorded the cutting force, whereas a
data logger (DAQ9234; LabVIEW National Instruments, Inc.) performed
other measurements. A total of 500 holes, each with a diameter of
2 mm, were drilled using diamond-coated carbide tools. The dataset
comprised 500 holes, distributed across five plates with 100 holes per
plate. A single tool was used to drill each plate, yielding 100 holes
per tool to minimize wear-induced experimental error. The CFRP used
was a 3 mm thick unidirectional material made of 11 fabric plies of
SK SKYFLEX USN300B prepregs, cured in an autoclave for 90 min
at 125 ◦C under 5 bar. Table 1 lists the detailed CFRP properties.
The optical images of the machined surfaces were obtained using a
VHX-7000 microscope (Keyence).

3.2. Implementation details

The model was trained on a single NVIDIA RTX A6000 for 200
epochs. The batch size was set to 1, executed for three runs to accom-
modate the potential variability resulting from random initialization.
The dataset was divided into training and test sets in an 8:2 ratio.
5

Fig. 4. Experimental setup for CFRP drilling using a robotic machining system.

Table 1
Experimental setting and CFRP material properties.

Experimental setting

Parameter Condition

Feed (mm/rev) 0.02
Rotating speed (RPM) 6000
Diameter of tool (mm) 2
CFRP thickness (mm) 3
Cutting tool Diamond-coated carbide tool (Union tool)
Industrial robot Staubli TX90
Spindle HSD MT1055
Dynamometer Kistler 9256C
Data logger DAQ9234; LabVIEW National Instruments, Inc

CFRP material properties

Property Value

Fiber content (%) 67
Volume fraction of fiber (Vf) (%) 57
Young’s modulus, E1 (GPa) 138
Young’s modulus, E2, E3 (GPa) 8.02
Shear strength, 𝜏1 (MPa) 89
Shear strength, 𝜏2 (MPa) 63
Poisson’s ratio, 𝛾13 0.31
Glass transition temperature (◦C) 126
Decomposition temperature (◦C) 405

The Adam optimizer with a learning rate 2e−4 and 𝛽 = 0.5 was used
for the generator and discriminator networks. Tables 2 and 3 list the
averages and standard deviations of the results from these iterations,
respectively.

4. Result

4.1. Quantitative analysis

Quantitative metrics were employed to measure the performance
and effectiveness of Sensor2Image. A comparative analysis of the re-
sults is presented, considering cases with and without applying the
modified discriminator loss function and optimal 𝜆 value determined
through grid search. Furthermore, the delamination prediction per-
formances of various machine-learning models were comparatively
analyzed. This analysis provides insights into the effectiveness of Sen-
sor2Image compared with alternative approaches. Considering mul-
tiple metrics and benchmarking against other models ensured a ro-
bust evaluation of the performance and effectiveness of the proposed
approach.
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Table 2
Quantitative evaluation of Sensor2Image configurations using quality assessment scores

GS-S2I GD-S2I

Loss 𝜆 PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

BCE

40 21.92 ± 0.98 0.50 ± 0.02 21.97 ± 1.05 0.51 ± 0.02
60 21.90 ± 1.05 0.51 ± 0.02 21.92 ± 1.07 0.51 ± 0.02
80 22.67 ± 0.07 0.56 ± 0.04 22.27 ± 0.15 0.55 ± 0.00
100 22.26 ± 0.03 0.51 ± 0.00 22.16 ± 0.23 0.53 ± 0.07

LS

40 21.96 ± 0.99 0.50 ± 0.02 21.96 ± 1.04 0.50 ± 0.02
60 21.94 ± 0.97 0.51 ± 0.02 21.91 ± 1.05 0.50 ± 0.02
80 23.67 ± 0.30 0.60 ± 0.01 22.74 ± 0.07 0.61 ± 0.01
100 22.31 ± 0.23 0.54 ± 0.03 22.27 ± 0.33 0.55 ± 0.03

4.1.1. Image quality
The peak signal-to-noise ratio (PSNR) and structural similarity index

measure (SSIM) (Wang et al., 2004) are widely used qualitative metrics
in evaluating generated images.

The PSNR is used for assessing the quality of reconstructed or
generated images. It quantifies the difference between the reference
image and generated image in terms of the mean squared error (MSE).
A higher PSNR generally indicates better performance, with the gener-
ated image being closer to the reference image in terms of pixel-wise
differences.

PSNR = 10 log10

(

MAX2
𝑌

MSE(𝑌 , 𝑌 )

)

(9)

where

MSE(𝑌 , 𝑌 ) = 1
𝑚𝑛

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
[𝑌 (𝑖, 𝑗) − 𝑌 (𝑖, 𝑗)]2 (10)

𝑌 refers to the generated image, 𝑌 corresponds to the ground-truth
image, and MAX2

𝑌
denotes the maximum pixel value of the generated

image, with 𝑚 and 𝑛 representing the height and the width of the image,
respectively.

By contrast, the SSIM is a more sophisticated metric that considers
structural, luminance, and contrast information in images. This pro-
vides a better indication of perceived visual quality. The SSIM tends to
correlate better with the human perception of image quality. It ranges
from −1 to 1, with a value of 1 indicating a perfect match between the
reference and generated images.

SSIM(�̂�, 𝑦) =

(

2𝜇�̂�𝜇𝑦 + 𝑐1
) (

2𝜎�̂�𝑦 + 𝑐2
)

(

𝜇2
�̂� + 𝜇2

𝑦 + 𝑐1
)(

𝜎2�̂� + 𝜎2𝑦 + 𝑐2
) (11)

where 𝑐1 =
(

𝑘1𝐿
)2 and 𝑐2 =

(

𝑘2𝐿
)2 are variables used to stabilize the

division with a weak denominator, and 𝐿 is the dynamic range of the
pixel values (usually 2#bits per pixel − 1). 𝜇 represents the pixel sample
mean, 𝜎2 denotes the variance, and 𝜎�̂�𝑦 represents the covariance
between the generated and ground-truth images.

In the original pix2pix model, the discriminator used the BCE loss
function, and a 𝜆 value of 100 was used in (8). However, this work
deviated from the original configuration and explored different options.
Specifically, it compared the performance with the LS loss function
while varying the 𝜆 value over a range of 40, 60, 80, and 100, as
presented in Table 2. Two variants of Sensor2Image, namely, GS-
S2I and GD-S2I, were quantitatively evaluated. These variants were
derived from different image-transformation techniques applied to the
sensor data. GS-S2I and GD-S2I represent GASF- and GADF-based Sen-
sor2Image, respectively. This evaluation aimed to validate the impact
of the choice of loss function on overall performance of the model and
determine the optimal 𝜆 value. The range of 𝜆 values evaluated was 40,
60, 80, and 100.

Among the evaluated configurations, GS-S2I with an LS loss and a 𝜆
value of 80 achieved the highest PSNR score of 23.67 ± 0.30, indicating
more accurate image reconstruction with the minimal distortion. By
6

Fig. 5. Hole delamination assessment.

contrast, GD-S2I with an LS loss and a 𝜆 value of 80 achieved the
highest SSIM score of 0.61 ± 0.01, indicating better preservation of
structural and textural similarities between the generated and target
images. Across the range of 𝜆 values of 40–100, the configuration with a
𝜆 value of 80 consistently exhibited superior performance compared to
other settings. This value helped achieve a favorable balance between
image quality and fidelity to the ground truth.

These results highlight the effectiveness of the LS loss function and
an appropriate 𝜆 value in improving image quality and similarity in GS-
S2I and GD-S2I. The LS loss function facilitates smoother gradients and
improves convergence during training, resulting in pixel-wise accuracy
and reduced image distortion. In addition, lowering the 𝜆 value to
80 results in more visually appealing and realistic generated images.
Nonetheless, a balance is necessary because lowering the 𝜆 value exces-
sively may introduce minor distortions in terms of pixel-wise similarity
to the target image.

4.1.2. Retrieving delamination factors
Various delamination factors were computed to assess the quality of

the generated image in relation to the ground-truth images and present
the corresponding errors. This analysis validated the applicability of the
proposed method to CFRP processes regardless of the delamination fac-
tor. Three factors were used for the evaluation: 𝐹𝑑 , 𝐹𝑎, and 𝐹𝑑𝑎. These
factors were measured using the distance or area from the machined
surface hole, as shown in Fig. 5, calculated using (12) to (14).

𝐹𝑑 =
𝐷max
𝐷0

(12)

𝐹𝑎 =
(

𝐴𝑑
𝐴𝑛𝑜𝑟𝑚

)

% (13)

𝐹𝑑𝑎 = 𝐹𝑑 +
𝐴𝑑

(

𝐴max − 𝐴𝑛𝑜𝑟𝑚
)

(

𝐹 2
𝑑 − 𝐹𝑑

)

(14)

Fig. 6 shows the image-processing steps to extract these factors from
the ground-truth and generated images of a CFRP drilled-hole surface.
These steps involve converting the image to grayscale, applying a
Gaussian blur filter, contouring, and determining the maximum convex
hull area. These steps help reduce noise, identify object boundaries, and
obtain an objective measure of the size and shape of the drilled hole.

To validate the effectiveness of the proposed Sensor2Image, its
performance was compared with those of various machine-learning
models. These models utilize the statistical characteristics of raw force
sensor values as inputs and extract nine time-domain features (min-
imum, maximum, peak-to-peak, median, root mean square (RMS),
mean value, rectified mean value, variance, and standard deviation)
as inputs, as suggested by Cui et al. (2021). The errors of each factor
between the ground-truth and generated images were quantified using
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Table 3
Quantitative analysis of delamination factors using error metrics.

MAPE MAE (×10−2)

𝐹𝑑 𝐹𝑎 𝐹𝑑𝑎 𝐹𝑑 𝐹𝑎 𝐹𝑑𝑎

Linear 4.27 ± 0.06 23.46 ± 1.77 4.99 ± 0.03 5.15 ± 0.01 2.61 ± 0.01 6.52 ± 0.04
Ridge 4.22 ± 0.02 23.23 ± 0.21 4.98 ± 0.03 5.15 ± 0.01 2.59 ± 0.01 6.49 ± 0.01
Lasso 4.24 ± 0.02 22.72 ± 1.78 5.05 ± 0.01 5.21 ± 0.09 2.74 ± 0.00 6.54 ± 0.01
Decision Tree 5.39 ± 0.34 30.72 ± 0.96 6.06 ± 0.61 6.58 ± 0.49 3.72 ± 0.03 7.62 ± 0.18
Random Forest 4.41 ± 0.04 23.15 ± 1.87 5.18 ± 0.07 5.51 ± 0.03 2.67 ± 0.03 6.76 ± 0.08
Extra Trees 4.56 ± 0.05 23.59 ± 2.25 5.42 ± 0.10 5.54 ± 0.01 2.68 ± 0.03 7.02 ± 0.04
KNN 4.30 ± 0.02 23.78 ± 1.61 5.18 ± 0.01 5.30 ± 0.02 2.84 ± 0.01 6.68 ± 0.02
Elastic Net 4.24 ± 0.02 23.06 ± 1.29 5.04 ± 0.01 5.22 ± 0.09 2.73 ± 0.00 6.54 ± 0.01
AdaBoost 5.48 ± 0.05 23.11 ± 1.63 6.18 ± 0.18 6.55 ± 0.13 2.91 ± 0.02 7.69 ± 0.33
XGBoost 4.67 ± 0.15 23.38 ± 0.93 5.27 ± 0.04 5.51 ± 0.14 2.91 ± 0.12 6.87 ± 0.16
Gradient Boosting 4.17 ± 0.07 23.04 ± 0.66 5.08 ± 0.05 5.19 ± 0.08 2.65 ± 0.04 6.53 ± 0.06
LightGBM 4.59 ± 0.04 23.52 ± 0.15 5.53 ± 0.08 5.60 ± 0.02 2.85 ± 0.04 7.12 ± 0.10

pix2pixHD (Park et al., 2019) 3.95 ± 0.01 23.19 ± 2.69 4.93 ± 0.20 5.01 ± 0.01 3.40 ± 0.48 6.66 ± 0.28
SPADE (Wang et al., 2018) 4.19 ± 0.31 44.09 ± 4.66 6.10 ± 0.63 5.26 ± 0.40 5.84 ± 0.72 8.07 ± 0.86
ASAPNet (Shaham et al., 2021) 4.32 ± 0.56 36.06 ± 10.39 5.81 ± 1.09 5.33 ± 0.64 4.33 ± 1.12 7.52 ± 1.30
GS-S2I* 3.57 ± 0.05 21.57 ± 0.60 4.36 ± 0.07 4.52 ± 0.07 2.82 ± 0.17 5.86 ± 0.09
GD-S2I* 3.77 ± 0.06 23.77 ± 0.31 4.71 ± 0.12 4.76 ± 0.07 3.09 ± 0.09 6.34 ± 0.17
Fig. 6. Preprocessing steps for assessing hole delamination: (a) creating a circle for
the drilled hole, (b) visualizing the convex hull of contours by applying Gaussian blur
and filtering, (c) determining the maximum area of the convex hull, and (d) drawing
a circle with a diameter equal to the maximum diameter of the defect.

the mean absolute percentage error (MAPE) and mean absolute error
(MAE), calculated using (15) and (16).

MAPE =
𝑁
∑

𝑖=1

|

|

|

|

|

d𝑖 − d̂𝑖
d𝑖

|

|

|

|

|

× 100
𝑁

% (15)

MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

d𝑖 − d̂𝑖
|

|

|

(16)

where d𝑖 and d̂𝑖 represent the delamination factors in the ground-truth
and generated images, respectively.

Table 3 provides a quantitative analysis of the delamination factors
using these error metrics. MAE is expressed in units of 10−2. The com-
parison included various machine-learning models, including linear-,
tree-, boosting-, and clustering-based models, each focusing on predict-
ing a single delamination factor. These models were evaluated based on
their performance in predicting the three delamination factors: 𝐹𝑑 , 𝐹𝑎,
and 𝐹 . The values in bold in the table indicate the lowest error values
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𝑑𝑎
for each delamination factor, highlighting the best model performance.
The models marked with an asterisk, GS-S2I* and GD-S2I*, represent
the two Sensor2Image models trained based on the LS loss function and
a 𝜆 value of 80, determined as the optimal configuration on the results
from Table 2.

The results demonstrated that the proposed approaches, GS-S2I*
and GD-S2I*, exhibited superior performance in terms of MAPE and
MAE for most delamination factors compared with the other models.
However, the proposed approaches have room for improvement in
predicting 𝐹𝑎 on the generated images, as evidenced by their MAE
values. This may be because 𝐹𝑑 considers only the maximum delam-
ination length, whereas 𝐹𝑎 requires a 360◦ assessment of the overall
delamination area. Therefore, generating more sophisticated machined-
hole surface images is necessary for a more accurate 𝐹𝑎 prediction.
Enhancements in the 𝐹𝑎 performance could potentially improve the 𝐹𝑑𝑎
performance owing to the influence of 𝐹𝑑 and 𝐹𝑎.

Despite their relatively higher MAE values for 𝐹𝑎, the GS-S2I* and
GD-S2I* models offer the distinct advantage of simultaneously predict-
ing all delamination factors. This distinguishes them from traditional
machine-learning models, which typically focus on predicting a single
delamination factor at a time. GS-S2I* and GD-S2I*, which generate
machined-hole surface images, exhibit comparable or even superior
prediction performance compared with these single-factor models. They
can simultaneously estimate various factors by extracting relevant in-
formation from the generated image. This flexibility allows the models
to have wide applicability because they are not limited to specific
delamination factors. These models can adapt to various situations
where different delamination factors may be considered.

4.1.3. Comparison with other baseline approaches
A comparative analysis was conducted to assess the performance of

the proposed baseline model against existing literature on supervised
image-to-image translation with a single-model output. The proposed
baseline model is described in Section 2.3. The other baselines selected
for comparison were pix2pixHD (Park et al., 2019), SPADE (Wang
et al., 2018), and ASAPNet (Shaham et al., 2021).

Table 3 presents comparative results of the predictive performance
of delamination factors. In addition, Table 4 compares the quality
assessment metrics for images generated from the GASF and GADF
representations by employing various baseline models. An assessment
of the images shown in Fig. 7 revealed that the existing models were not
the most suitable choices for the baseline. Pix2pixHD primarily focuses
on generating high-resolution images, SPADE focuses on incorporating
style information, and ASAPNet prioritizes rapid image translations.
While these characteristics are valuable for specific applications, they
are not highly relevant to the task considered, which involves using
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Fig. 7. Qualitative comparison of various baselines in different GAF images.
Table 4
Quality assessment score comparison of Sensor2Image and existing methods in the literature.

GASF GADF

Baseline PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

pix2pixHD (Park et al., 2019) 22.29 ± 0.04 0.55 ± 0.0 22.32 ± 0.04 0.54 ± 0.0
SPADE (Wang et al., 2018) 21.66 ± 0.32 0.5 ± 0.01 22.03 ± 0.14 0.5 ± 0.0
ASAPNet (Shaham et al., 2021) 21.79 ± 0.04 0.51 ± 0.01 20.83 ± 0.02 0.49 ± 0.01
Proposed 23.67 ± 0.30 0.60 ± 0.01 22.74 ± 0.07 0.61 ± 0.01
force sensor data to synthesize hole surface images. This misalignment
with the problem requirements contributed to the relatively inferior
performance observed.

4.2. Qualitative results

Sensor2Image generated visually realistic machined surface images
from the force sensors during the drilling process, as shown in Fig. 7.
The top two input sets were generated using the GASF, whereas the
bottom two were generated using the GADF. The proposed fine-tuned
models, GS-S2I* for GASF and GD-S2I* for GADF, were employed.

A key finding of this research is that the fine-tuned models, GS-S2I*
and GD-S2I*, demonstrated superior qualitative results compared with
other baseline approaches. These models could more accurately capture
intricate details and learn overall patterns in machined surface images.
This superiority was evident regardless of the sensor-to-image genera-
tion method employed, whether GASF or GADF. GS-S2I* and GD-S2I*
could generate visually realistic images without exhibiting bias towards
any specific input generation method, highlighting their robustness and
flexibility in handling varied data inputs. Such capabilities indicate the
advanced potential of these models for rendering more precise and
detailed representations of machined surfaces, marking a significant
advancement over baseline methods in the field.
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5. Conclusion

Sensor2Image marks a significant breakthrough in the field of CFRP
drilling processes by introducing a novel approach for generating
drilled-hole surface images from force sensor data. This method pro-
vides a unique visual inspection tool that facilitates comprehensive and
measurement-agnostic delamination prediction and analysis. Unlike
previous methods that focused on specific delamination factors, the
proposed model could more comprehensively predict the extent of
defects, rendering it highly suitable for practical applications.

To generate images similar to real delamination patterns and with
distinct features, this work designed the loss functions of Sensor2Image
for the generator and discriminator. Further, the weights of the loss
terms in the total loss were experimentally adjusted. The 𝐿1 loss was
used as a regularizer in the generator’s loss function to ensure simi-
larity to real delamination patterns, whereas the LS loss function was
incorporated in the discriminator to produce less blurred and clearer
outputs. Moreover, the weight 𝜆 between the adversarial loss and the
𝐿1 loss was considered as well, which determined the final loss.

The effectiveness and versatility of Sensor2Image was demonstrated
through qualitative and quantitative analysis. A comparative analysis
for qualitatively comparing Sensor2Image to other state-of-the-art ap-
proaches such as pix2pixHD, SPADE, and ASAPNet was performed.
Sensor2Image outperformed other approaches, which, despite their
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strengths in generating high-resolution images, incorporating style in-
formation, or enabling rapid image translation, were not the best
choices for the task performed. Further, the qualitative results indicated
that Sensor2Image produced visually realistic images of machined sur-
faces, thereby accurately capturing the intricate details and overall
patterns.

Quantitative analysis using PSNR and SSIM metrics showed that
the fine-tuned models, GS-S2I*, and GD-S2I*, achieved superior image
quality compared to the original pix2pix configuration. The proposed
models demonstrated outstanding performance in terms of the simul-
taneous prediction of multiple delamination factors, as evidenced by
their low MAPE and MAE values. This ability to predict multiple factors
distinguishes Sensor2Image from traditional machine learning models
that focus on a single delamination factor. Moreover, the flexibility of
Sensor2Image facilitates broad applicability to different situations and
delamination factors.

To the best of the authors’ knowledge, this marks the first attempt
at generating image predictions based on sensory data. This innovative
approach is particularly beneficial for processes requiring multiple
delamination factors because it facilitates intuitive verification of pro-
cess outcomes through visual representations. The proposed approach
can enhance the efficiency and reliability of industrial processes, par-
ticularly those involving complex delamination factors. Furthermore,
the visual output offers a more accessible means of monitoring and
interpreting process results.

The potential areas for future research include the customization of
Sensor2Image for specific applications in the aerospace and manufac-
turing industries. Further, its applicability can be extended to different
composite materials. This would broaden its use in critical applications
wherein material integrity is crucial. In addition, evaluating the effect
of tool wear on delamination and incorporating it into the model could
provide valuable insights. Although the experiments in this work were
designed to minimize tool wear through frequent tool changes, it may
be worthwhile to explore the impact of less frequent tool changes
to obtain a more comprehensive understanding of the effect of tool
wear on delamination. Advanced machine learning techniques that can
handle variations in tool wear should be investigated to improve model
robustness. The integration of data from the additional sensors that
monitor the drilling process could provide valuable findings. Multi-
sensor data fusion approaches can facilitate a more comprehensive
characterization of defect formation mechanisms and offer insights into
process dynamics. Leveraging these additional data streams can poten-
tially boost the predictive performance and robustness of the proposed
method for robotic drilling operations. Future research will explore
the integration of various sensor data to enhance the understanding
of the drilling process and improve the prediction of delamination.
Moreover, although the current work did not explicitly incorporate the
effect of vibration, investigating dedicated mechanisms for vibration
isolation when conducting experiments can be a valuable research
direction. The consideration of vibration effects can enhance process
control precision and decrease the defects in vibration-prone robotic
machining environments.
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