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ABSTRACT This paper presents an efficient motion planning framework for a perturbed linear system
using a minimax objective function while ensuring the safety of the system. Specifically, the proposed
approach is naturally deployed to handle model uncertainties by a recursive least squares-based set-
membershipmechanism. Next, a minimax-based objective optimization problem is formed to handle the goal
flexibility. The robust model predictive control algorithm is then designed to solve this robust optimization
objective. Furthermore, a refined strategy is able to approximate robust objectives by synergizing interval
prediction and tree-based planning to achieve the best surrogate performance. It is extended to incorporate a
hierarchical control architecture in a specific context. This extension serves to enhance path efficiency and,
in turn, alleviates the constraints associated with modeling assumptions. The primary difficulty involves
integrating and adjusting theoretical assurances at each level, a task accomplished through a comprehensive
examination of suboptimality from end to end. The proposed framework is versatile across a variety of
models, incorporating a solid, data-informed approach for selecting models. This integration permits a more
flexible approach to modeling assumptions. Moreover, we consistently maintain the practicability of our
method throughout its application, a fact that is evidenced by its successful deployment in complex simulated
settings.

INDEX TERMS Motion planning, model predictive control, tree-based planning, interval prediction.

I. INTRODUCTION
Deploying robotic vehicles that operate fully autonomously
in inhabited areas, especially in apartment complexes, is a
great potential step toward building a smart city [1], [2].
During operation, the presence of dynamic obstacles, such
as pedestrians, other robots, and vehicles, within the envi-
ronment, adds to the complexity as it constantly evolves
over time, making the task of discovering efficient, collision-
free paths increasingly demanding [3], [4], [5]. Thus,
one of the most fundamental criteria for these robots is
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motion safety against a high level of unpredictability and
uncertainty. The rapid growth of this research topic has
resulted from high real-world demand. In this context,
tackling issues involving uncertain systems has always been
a major challenge, with a considerable volume of literature
dedicated to addressing each undertaking. Previous research
predominantly focuses on stabilizing these systems with
respect to a predetermined reference state or trajectory, such
as sliding-mode control [6], [7], [8],H∞ control [9], system-
level synthesis control [10], [11] and Model Predictive
Control (MPC) [12], [13], [14], [15]. Within the MPC
framework, one of the currently popular strategies has
the unique ability to both track and predict trajectories.
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Its features have been developed to tackle model uncertainty,
although they often lack robust guarantees. An upgraded
variant called the tube-MPC algorithm emerges as an
attempt to provide theoretical assurances of robust constraint
satisfaction [16], [17], [18]. The objective is to maintain
the system state within a secure region centered around the
origin, typically formulated as a convex problem. Introducing
greater flexibility, an adaptive MPC [19], [20], [21] is
devised, incorporating the fulfillment of the Persistence of
Excitation (PE) condition [22]. This approach aims to ensure
the controlled system exhibits properties of robust stability
and recursive feasibility. Nevertheless, many practical tasks
do not simply involve stability issues but also pay attention to
safety, particularly those involving obstacle avoidance. Such
traditional obstacle avoidance techniques as the Dynamic
Window Approach (DWA) [23], [24], [25] and the Timed
Elastic Band (TEB) [26], [27] are primarily designed for
static obstacle avoidance. Consequently, maneuvering around
dynamic obstacles poses a unique challenge, requiring
the necessary information about obstacles through object
detection solutions to adapt effectively.

Fortunately, the MPC algorithms have continued to be a
highly effective control technique, maintaining their efficacy
by accommodating complex dynamical systems and robust
control objectives. Several methodologies have been investi-
gated, including the Differential Evolution Algorithm (DEA)
[28], [29], Sand Cat Swarm Optimization (SCSO) [30],
Grey Wolf Optimizer (GWO) [31] and Non-dominated
Sorting Genetic Algorithm III (NSGAIII) [32] for seeking
objective optimums in complex landscapes. However, these
methods are more suited for problems where a global or
multi-objective optimum exists; they might not inherently
focus on the worst-case scenarios. Herein, the duties are
described as risk management in uncertain or adversarial
conditions. Thus, minimax is optimal for scenarios where
safeguarding against the worst-case outcome is crucial [33],
[34], [35], [36], [37]. It is notably suitable to offer greater
flexibility in defining goals. Reachability analysis of the
minimax-based problems allows selecting the best possi-
ble dynamics while adhering to controllability constraints.
It yields the ability of a cumulative regret minimization
within the Linear Quadratic (LQ) problem to achieve approx-
imately a certain level [38]. Randomized candidate dynamics
selection [39], [40] and noise injection [41] also achieve
similar results. Moreover, the minimax control strategy can
be extended to robust versions byMarkov Decision Processes
in finite time [42], [43]. Yet, the minimax objective function
has contained several intrinsic limitations, such as the set
of possible dynamics ambiguity that has to satisfy specific
properties [44]. This is not directly applicable when making
sequential decisions with continuous states. Meanwhile,
random exploration is not feasible in critical cases where
safety must be guaranteed. The proposed approach not only
considers this issue but also solves restrictions on the cost
function form that yield difficulty in calculating to reach the
optimal value explicitly.

This research paper focuses on overcoming the challenges
of planning and controlling the perturbed mobility system
while maximizing a bounded cost function, especially in sit-
uations where errors must be avoided. In detail, following
an offline estimation phase based on previous work [20],
an interval predictor is employed to generate oversets and
find a near-optimal control through an improved tree-based
planning procedure [45]. Furthermore, the evaluation of
suboptimality between a minimax objective-based control
strategy and optimal performance involves holding forth
to generic cost solutions. It deals with complex functions
common to practical problems involving combinatorial opti-
mization and branching decisions. Themain contributions are
outlined as follows:

• The recursive least-squares-based set-membership esti-
mation mechanism provides a sequence of bounding
sets of the unknown model parameters as a premise to
formulate the robust objective function.

• We exploit the ability of the interval predictors to
design the improved tree-based planning approach that
is able to approximate robust objectives with a tractable
surrogate via defining a generic cost.

• The proposed framework is theoretically analyzed to
indicate an upper bound for the approximation bias
and suboptimality. It guarantees the best surrogate
performance achieved during planning.

The remaining sections of the paper are structured as the
following. The dynamic system and objectives are described
in Section II. Section III presents the complete integration of
the estimation, prediction, and control. Section IV establishes
the simulation scenarios and provides a discussion of the
results. Finally, Section V summarizes the conclusions drawn
from the study.

II. PROBLEM FORMULATION
This work investigates a perturbed linear system featuring
unknown parameters in the time-domain representation
through the following formula:{

ẋt (t) = A(ξ )xt (t) + Bu(t) + d(t),
yt (t) = Cxt (t) + γ (t)

(1)

where xt (t) ∈ Rp, u(t) ∈ Rq, d(t) ∈ Rp, y(t) ∈

Rn and γ (t) ∈ Rn denote the system state, the control
input, the disturbances, the measurement output and noise,
respectively; the state matrix A(ξ ) ∈ Rp×p depending on
the uncertain parameter ξ ; the control matrix B ∈ Rp×q and
C ∈ Rn×p are known.

The objective of this work is to develop a robust planning
and control framework for the system (1) that delivers
great decisions in critical cases (robust) while maintaining
flexibility in performing tasks (adaptive). Exploiting the
results of the interval prediction technique supported by the
online uncertain parameter estimation, the obstacle avoidance
tasks are formulated with the robust objective and a tractable
surrogate by defining a generic cost. To start with, we define
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FIGURE 1. Illustration of the proposed decision-making framework and
its relationship with other system components.

that the system (1) is subject to the constraint sets of the
state xt (t) ∈ S ⊂ Rp, the control u(t) ∈ A ⊂ Rq and the
uncertainty set D ⊂ Rd with a priori knowledge. Similar
to [39], to procure an appropriate set of all admissible values
for ξ ∈ D, the form of A(ξ ) is supposed as the following.
Assumption 1: Suppose that the matrices A ∈ Rp×p, ρi ∈

Rd×p×p are known such that ξi ∈ D,∀i ∈ d, and the dynamic
matrix structure can be formed as follows:

A(ξ ) = A+

d∑
i=1

ξiρi. (2)

Assumption 2: In the system (1), there exist admissible
perturbation bounds d, d ∈ 0p, γ , γ ∈ 0n such that
d ∈ [d(t), d(t)], γ ∈ [γ (t), γ (t)],∀t ≥ 0, both containing
the origin in their interior. In addition, x0, x0 ∈ 0p such
that the initial conditions x0 ∈ [x0, x0] ⊂ S. The initial
uncertainty set is defined by D0 =

{
ξ ∈ Rd , |ξ − ξ0| ≤ ξ

}
,

where an initial ξ0 and ξ are positive values.
Realistically, most practical works require high robust-

ness and motion safety, thus the knowledge of physical
models and well-designed controllers are still given the
top priority. It implies that the proposed strategy can
still ensure that expectations are met but also allows for
uncertain terms around the nominal model, E(xt (t), u(t), ξ ) =

[ρ1xnt (t), . . . , ρN x
n
t (t)] ∈ Rp×N , which are known signals

that linearly depend on ξ , at step n ∈ N with N =

{1, 2, . . . ,N + 1} and a given number of transition samples
N ∈ N. Herein, we suppose that a linear regression system
Y = E(t)ξ∗

+ ϑ(t) based on the hypothesis in [46] instead
of the measurement output, in which the lumped uncertainty
ϑ(t) is the sum of disturbance d(t) and the measurement
noise γ (t), where ξ∗ is the true values of ξ . According to
Assumption 2, ϑ(t) can be bounded by the specified positive
value ϑ = max

{
||d ||, ||d ||

}
+ max

{
||γ ||, ||γ ||

}
.

III. THE PROPOSED CONTROL APPROACH
In this section, the proposed strategy is delineated as
the following. Initially, an online approach is utilized to
concurrently determine the unknown parameters and the
uncertainty set. Subsequently, the interval prediction block
is formulated, leveraging inclusion features to prefigure
information with regard to the presently observed states,
which is illustrated in Figure 1.

A. STATE ESTIMATION AND PREDICTION
In order to premise the robust planning control framework
design, the estimation ξ̂ of unknown system parameters ξ can
be calculated by [20] and [47] as follows:

˙̂
ξ (t) = ξ̂ (t) + κ̇(t) ˙̆σ (t)E(t) ˙̃ϑ(t) (3)

where ξ̂ (t) ∈ RN , σ̆ (0) = 1 and the equalities at time instant t
are indicated as the following, respectively

˙̃ϑ(t) = Y (t) − E(t)ξ̂ (t) (4a)

˙̆σ (t) =
σ̆

1 + κ̇(t)σ̆E(t)2
(4b)

κ̇(t) =


0, if

∣∣∣ ˙̃ϑ∣∣∣ ≤ ϑ,∣∣∣ ˙̃ϑ(t)∣∣∣−ξ
ϑE(t)2 ˙̆σ (t)

otherwise
(4c)

Subsequently, our purpose is to design the appropriate set
of all admissible values D̂(t) such that carries the faithful
parameters with an eminent probability P

(
ξ ∈ D̂

)
at least

1 − β,∀β ∈ [0, 1). According to (3), the set D̂(t) can be
given as follows:

D̂(t) = D
⋂
ι∈[ϱ,t]

{
ξ ∈ RN

: |ξ − ξ̂ (ι)| ≤ δ̃(ι)
}

(5)

where δ̃(ι) = σ̆
1
2ϖ (ι) is a scalar with ϖ (0) = ξ and the

expressionϖ (t):

ϖ̇ (t)2 = ϖ 2(t) + κ̇

(
ϑ
2
−

δ̃2

1 + κ̇E2σ̆

)
(6)

Remark 1: According to (3) and (5), it is obvious that
the property D̂(t) ⊆ D(t), t ≥ 0 is satisfied with its size
shrinking. Owing to ξ∗

∈ D(0), we can give the conclusion
that ξ∗

∈ D(t),∀t ≤ 0. Meanwhile, the estimation error
||ξ∗

− ξ̂ (t)|| ≤ δ̃(t),∀ξ∗
∈ D0 is guaranteed to be bounded

and nonincreasing when Assumption 2 is fulfilled.
Furthermore, to leverage the benefits of the promising results
in [20], the interval prediction approach is described to obtain
[x(t), x(t)] with the inclusion property:

x(t) ≤ xt (t) ≤ x(t),∀t ≥ tN . (7)

The above property (7) yields A ≤ A(ξ ) ≤ A from
the set D̂N ,β ; and the information on the current state xN
and the admissible disturbance bounds [d(t), d(t)] provide
the information on this predictor with N samples. From this
hypothesis, the polytopic structure is deployed to produce
more stable predictions based on matrix interval arithmetic to
derive the predictor. It is observed that D̂(t) can be enclosed
on ξ obtained from (8) into a polytope for A(ξ ), which can be
expressed as follows:

A(ξ ) = AN +

2d∑
i=1

WiXN ,i (8)

VOLUME 12, 2024 39719



C. P. Vo et al.: Efficient Motion Planning With Minimax Objectives

where AN = A(ξ̂ (t)),Wi ≥ 0,
∑2d

i=1Wi = 1, XN ,i = A(ξ̂ +

κ̃ĩδ) − AN for κ̃i ∈ {−1, 1}d with i ∈ [1, 2d ]. Besides, AN is
Metzler to inherit beneficial features of nonnegative systems.
Assumption 3: Suppose that an orthogonal matrix H ∈

Rp×p has existence with the non-diagonal elements of
H⊤ANH are all non-negative.
Remark 2: According to [46], the capability of (8) and

the inclusion property (7) are verified and Assumption 3 is
supposed for the system (1), then the interval predictor is
given as follows:

ẋ(t) = AN x(t) − X+x−(t) −X−x+(t)
+Bu(t) + d(t) − d(t),

ẋ(t) = AN x(t) − X+x−(t) −X−x+(t)
+Bu(t) + d(t) − d(t)

(9)

where the polynomials X+
=
∑2N

i=1 X
+

i , X−
=
∑2N

i=1 X
−

i .

B. ROBUST PLANNING AND CONTROL
After briefly presenting the antecedent strategies of state
estimation and prediction, the proposition of a robustly
stabilizing system (1) near the origin is introduced in [20],
taking into account parametric uncertainty and restricted
disturbances. It also ensures that [x0, x0] falls within S,
establishing defined boundaries for the state. Then, the robust
MPC approach reaches significant effectiveness by utilizing
a control mechanism that stabilizes within the predictive
intervals. However, the conservativeness of the robust MPC
algorithms can be challenged due to the goal flexibility in
the practical application. Therefore, the minimax control
objective can be a promising candidate for those duties. Then,
the process of planning the path is incorporated to handle a
sequence of states or decisions that the system up to time
to reach a desired goal. Hereby, the tree-based planning
algorithm based on [45] is improved to face a sequential
decision problem in a confidence set with continuous states
via the generic costs J . In addressing the optimal and
robust control objective, the hierarchical control mechanism
is applied to execute a first approximation and discretization
of the continuous decision space (Rq)N. This approach allows
for the selection of a high-level action a at each time step,
where each action a ∈ A aligns with the choice of a low-level
controller, respectively. Although suboptimality is introduced
as a consequence of discretization, this may be alleviated by
constructing a manifold set of basic controllers.

Inspired by this aim, the supremum of the robust objective
J is taken to achieve the maximum value of the worst
possible results under D̂N ,β , the objective is defined as the
following.

J (u) = inf
ξ∈D̂N ,β

d∈[d,d]N

 ∞∑
n=N+1

ηnJ (xnt (u, d))

 (10)

where J refers to an arbitrary bounded cost function, η ∈

(0, 1] represents a discount factor, xnt (u, d) denotes the

state reached at step n under the planned control sequence
u ∈ (Rq)N and disturbances d within the specified admissible
bounds [d, d].

Thanks to the capability of the interval prediction approach
in (9), the idea is to seek the lower bound value of the robust
objective J in (10). Thus, a surrogate objective is proposed
to approximate the robust objective by finding the minimum
value of J (xt ), called the pessimistic cost Jn. Note that this
replacement renders the cost a non-Markov property, as it
involves evaluating the worst possible across the entire past
states.
Theorem 1: The surrogate objective plays the role of a

lower bound of the robust objective (10), which is defined as
follows:

Ĵ (u)
def
=

∞∑
n=N+1

ηnJn(u) ≤ J (u) (11)

where Jn(u) = min J (xt ), ∀xt ∈ [xn(u), xn(u)].
Proof: See Appendix 1.

Remark 3: Conservative approximations involve inten-
tionally overestimating risks in models for added safety.
Control sequences are designed based on a surrogate
objective Ĵ to prevent undesirable events, such as collisions.
Ensuring compliance with this feature provides confidence in
the effectiveness of the control sequence in the real system,
improving overall safety and reliability.

As the proposal above, the observations with respect to
time N including both predictor dynamics and objective
costs, are deterministic. This means that the manageable
objective function includes all the randomness associated
with disturbances and measurements. Therefore, an opti-
mistic planning (OP) algorithm, as described in [45],
is modified for suitability without the requirement for
Markovity or state enumeration. It can be optimized as
a sequence of actions by considering the corresponding
costs. Specifically, it generates the look-ahead tree T by
expanding progressively the leaf ak , i.e., the value of the
action sequence a at each iteration k ∈ K with K =

{1, 2, . . . ,K } and the number of planning iterations K ∈ N.
These sequences ak can be bounded by finding an argument
of the maximum, which is formed as follows:

ak = argmax
a∈℧k

la−1∑
n=0

Jn(a) +
ηla

1 − η
(12)

where ℧k denotes the set of the leaves of tree Tk and la
denotes the length of the sequence action a.
Lemma 1: Leveraging the suboptimality inherent in the

OP algorithm (12) from [45] for the surrogate objective (11)
after K iterations, we have

Ĵ (a⋆) − Ĵ (aK ) ≤ P
(
K−

log 1/η
log ν

)
(13)

where a problem-dependent variable ν is defined to gauge
the extent to which paths closely approximate optimality,

lim supla→∞

∣∣∣{a ∈ Ala : Ĵ (a⋆) − Ĵ (a) ≤
ηla+a+1

1−η

}∣∣∣1/la and
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P(•) is a positive function, which can be explained as
h(s) = P(g(s)), there exists s0, ς > 0 such that h(s) ≤ ςg(s),
∀s > s0.
Hereby, the optimal surrogate value Ĵ (a⋆) can be gradually

obtained at a polynomial rate when bringing into play enough
computational planning budget K . Nevertheless, between
Ĵ and the true robust objective J , there always exists a
bias. First, it originates from the approximation error of the
truly accessible set of an enclosing interval (7). Second, the
predictive error of the interval predictor (9) is affected by
the difference of the time-invariance A(ξ ) ∈ D̂N ,β and a
time-varying A(ξ (t)) ∈ D̂N ,β of the dynamics uncertainty.
Last, it is a little loose when verifying the lower bound of
the surrogate objective (11). Yet, this problem can be solved
under additional assumptions.
Assumption 4: Suppose that a Lipschitz regularity for the

cost J is satisfied and there exists ρ > 0, P > 0, Q0 ∈ Rp×p

and N0 ∈ N such that
[
A(ξN )⊤P+ PA(ξN ) + Q0 P

⊤P −ρIr

]
<

0, ∀N > N0.
It can be seen that Assumption 4 pertains to matrices

AN , which are formed indirectly from the algorithm. Then,
examining the validity becomes complicated. A more robust
yet simpler-to-verify criterion is that a set of the polytope (8)
at a certain iteration, where this stability property holds
uniformly. This suggests that the features are appropriately
activated when the estimation reaches the vicinity of the true
dynamics A(ξ ). Additionally, this approach allows for the
imposition of extra constraints on the estimation error, which
is dependent on the input.
Theorem 2: Under an additional PE condition, there

exists positive values ρ, ρ such that ρ2 ≤ λmin(E⊤
n 0

−1En) ≤

ρ2,∀n ≥ n0 in which the vector of eigenvalues λ(•) of a
matrix (•) ∈ Rn×n, 0 are the weights of the regularised
regression problem. It can easily be deployed into the
actual system when Assumption 4 is satisfied. Furthermore,
to ensure asymptotic near-optimality with P (≤) 1 − β, the
proposed framework can be bounded with K iterations for
planning when N → ∞ and K → ∞, which can be
expressed as:

J (a⋆) − Ĵ (aK ) ≤ D̃ + P
(
log

(
N d/2/β

)
N

)

+ P
(
K−

log 1/η
log ν

)
(14)

where J (a) denotes the optimal expectation that is achieved
when executing an action a ∈ A while a⋆ represents an
optimal action and D̃ represents a constant that signifies an
inherent suboptimality endured due to its robustness against
instantaneous disturbances d(t).

Proof: See Appendix 2.
To enhance the capability of the proposed approach, the

membership in polynomial time is validated to confidently
disqualify the (A, ρ)–modeling in Assumption 1 by means
of linear programming [48]. It permits the exploration of

a diverse range of potential features, reducing uncertainty
by ignoring and retaining only models aligned with current
observations. Subsequently, all retained hypotheses must be
taken into account continuously during the planning and still
ensure safety. One significant advantage of employing a lin-
ear model set lies in its ability to establish stringent conditions
for quantifying how well the modeling assumptions align
with the observed data. In particular, the polytopic set (8) is
determined with P (A(ξ )) ≤ 1− β given N − 1 observations.
Then this confidence set can be propagated to the next N
observation due to the linearity.
Assumption 5: Suppose there exists a finite set of candi-

dates Fm,∀m ∈ M withM = {1, 2, . . . ,M},M ∈ N that
gathers the dynamics F: ẋt (t) = Fm(xt (t), u(t)),∀t ≥ 0.
The designed planning algorithm is adjusted to effectively

harmonize these simultaneous hypotheses by maximizing a
robust objective that considers discrete ambiguity, which is
expressed as

J = sup
a∈AN

min
m∈M

∞∑
n=N+1

ηnJmn , (15)

where Jmn denotes the cost incurred by executing the action
sequence a up to step n under the dynamics Fm. While the
mentioned objective could be optimized using the similar
approach above, it would lead to a coarse and imprecise
approximation. Thus, the finite uncertainty structure outlined
in Assumption 5 is utilized to asymptotically regain the
true J . This reformation to the OP algorithm involves
replacing the robust upper-bound (12) on sequence values a,
that belongs to the look-ahead tree T as follows:

Ta(k)
def
= min

m∈M

la−1∑
n=0

ηnJmn +
ηla

1 − η
. (16)

In addition, from the definition in (16), the robust
upper-bound value and the robust lower-bound value can be
extended to inner nodes

Ta(k)
def
=


min
m∈M

la−1∑
n=0

ηnJmn +
ηla

1 − η
if a is a leaf;

max
b∈A

Tab(k) else.

,

(17)

La(k)
def
=


min
m∈M

la−1∑
n=0

ηnJmn if a is a leaf;

max
b∈A

Lab(n) else.

(18)

Remark 4: The exact recovery of a solution to a robust
objective (15) with discrete ambiguity is achievable asymp-
totically as the planning iteration K approaches infinity.
It is important to note the distinction from the results con-
cerning the robust objective (10) with continuous ambiguity
A(ξ ) ∈ D̂N ,β . In that context, the OP algorithm only attains
the surrogate approximation Ĵ , as elaborated in Theory 2.
Notably, the regret is contingent on the number K of node
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FIGURE 2. Virtual worlds in the Gazebo environment for performance
evaluations of the mobile robot control, which placed (a) static obstacles
in the first scenario and (b) a pedestrian in the second scenario.

TABLE 1. Parameters of DWA.

expansions in this case, but each expansion now demands M
timesmore simulations. Ultimately, the new upper-bound (16)
is integrated into the surrogate objective function (11).
Theorem 3: On sequence values of actions a, the robust

values inherit similar properties as the optimal values.
It means that the improved tree-based planning strategy (16)
is exhibited with the identical bound property in Lemma 1
with regard to the extended objective (15), it can be
bounded as

La(k) ≤ La(K ) ≤ Ja ≤ Ta(K ) ≤ Ta(k) (19)

where Ja
def
= maxu∈aA∞ minm∈M

∑
∞

n=la+1 η
nJmn .

Proof: See Appendix 3.

IV. SIMULATION VALIDATION
This section investigates the effectiveness of the suggested
strategy via a series of trials on both the mobile robot
in a 2D coordinate system and the autonomous vehicle.
These captured simulation environments are expressed in
Figure 2 and 5, respectively. For more objectivity, several
control parameters are set for all trials. The parameters η and
β are set to 0.9, and the planning iteration is denoted as K =

100. Disturbances are uniformly sampled [−0.1, 0.1]r and
measurements follow a Gaussian distribution with covariance
0s = 0.12Is. In comparison, the DWA and TEB methods
are popular techniques used in similar situations by quickly
generating feasible trajectories that avoid collisions. The
parameters for the DWA and TEB strategies are shown in
Table 1 and Table 2, respectively.
For the mobile robot, the state xt includes its position (x, y)

and velocity (vx , vy), which are actuated by a control signal
u = (ux , uy) ∈ [−1, 1]2 under the presence of unknownly
anisotropic friction coefficients (ξx , ξy). The objective is

TABLE 2. Parameters of TEB.

TABLE 3. Failures rate and travel time of the approach performances of
the mobile robot.

FIGURE 3. Performance test of the mobile robot in the first scenario:
(a) Odometry, (b) Yaw angle, (c) Forward velocity, (d) Rotational velocity.

to navigate to a goal state xg while avoiding collisions
with obstacles. The cost function is used to describe this
task, that is J (xt ) =

β(xt )
1+∥xt−xg∥2

, where β(xt ) is 0 if a
collision occurs and 1 otherwise. The control action set is
A = {(−1,−1), (−1, 1), (1,−1), (1, 1)} corresponding to
the up, down, left, and right directions. Due to the specific
features of our scenario, a robust baseline cannot be applied.
We compare our proposed approach with a conventional
control strategy that plans using the estimated dynamics ξ̂N .
Both approaches have the same partial knowledge of the
dynamical models and cost, remarking on the advantages
of our robust formulation that is independent of algorithmic
design. Table 3 displays the results of 100 simulations for a
single episode. It is evident that the conventional approaches
perform worse in time to reach the goal than the proposed
method, although they still successfully ensure safety without
any collisions in the medium with static obstacles, which
is expressed in Figure 3. In the presence of pedestrians in
the environment, the conventional approaches collide with
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FIGURE 4. Performance test of the mobile robot in the second scenario:
(a) Odometry, (b) Yaw angle, (c) Forward velocity, (d) Rotational velocity.

obstacles in 12% and 8% for the DWA and TEB strategies,
respectively. Meanwhile, the proposed strategy achieves the
goal with little failure, even with the shortest travel time in all
trials. Such features of these driving trajectories are observed
probably because the proposed approach avoided obstacles
through various actions such as stopping and turning to avoid
obstacles depending on the situation, which is shown in
Figure 4. On the other hand, the others tended to stop first
to avoid obstacles and wait for them to pass before driving.

For the autonomous vehicle, the state of the ego-vehicle
xt,0 ∈ R4 is working among H other vehicles with its states
xt,h ∈ R4, ∀h ∈ {0,H}, including its position (xh, yh),
velocity vh and heading ψh. It leads to a joint traffic state
xt = [xt,0, . . . , xt,H]⊤ ∈ R4H+4. These vehicles adhere
to predefined behaviors that are characterized by a set of
parameters ẋh = Fh(xt , ξh) in the presence of unknown
parameters ξh ∈ R5. The objective is to navigate to a
predefined goal and to simultaneously track the desired
velocity while ensuring safety, i.e., avoiding collisions with
vehicles. The cost function is simplified to describe this
task in the range 0 to 1, that is, J (xt ) = c1∥xt −

xg∥2 + c2 v
vmax

+ c3
lc

ls−1 + bpenalty, where c1, c2, c3, bpenalty
are parameter coefficients; lc, ls are the current lane order
and the sum of lanes, respectively; and vmax denotes the
maximum velocity setting in suitable scenarios, respectively.
In terms of the scaling of J in [0, 1], it receives the
maximum value of 1 when crashing into another vehicle,
while it receives the minimum value of zero when the
ego-vehicle reaches full velocity without changing lanes.
The control action A consists of changing the target lane
(lateral actions) and velocity (longitudinal actions), i.e., left
lane, right land, keep, faster, slower. It is noted that these
actions might be disabled separately by setting parameters
for specific scenarios. Hereby, the navigating goal of the
vehicle is automatically performed by a steering controller

TABLE 4. Failures rate and travel time of the approach performances of
the self-driving decision for the autonomous vehicle.

FIGURE 5. Captured simulation in the self-develop environment for
performance evaluations of the self-driving decision for the autonomous
vehicle. (a) highway scenario and (b) T-junction scenario.

to reach the lane in a highway scenario with c1 = 0, c2 =

0.4, c3 = 0.1, bpenalty = −1, vmax = 30m/s, while it is
ignored in a T-junction scenario where only the velocity is
considered with c1 = 0.4, c2 = 0, c3 = 0, bpenalty = −1,
vmax = 10m/s.

Thanks to the advantage of the structure imposed in (2), the
proposed strategy results in a greatly shrinking uncertainty
space ξ̂ when the whole state matrixA is estimated. The series
of repeated trials are performed and the results are gathered
in Table 4. It is expressed that the rate of failure of other
approaches is 9% and 6% in the highway scenario and a
bit reduced to 7% and 4% in the T-junction for the DWA
and TEB strategies, respectively. Meanwhile, the proposed
approach completely guarantees safety with zero failure cases
in both scenarios. Although the travel time is slightly longer
compared with the DWA in the highway scenario, it is
still acceptable when safety is a priority in situations where
robust durability is necessary. Our method demonstrates
superior performance in the most challenging scenarios and
consistently prevents collisions, albeit at the expense of
slightly increased travel time. Additionally, we examine
how suboptimality, expressed as J (xNt )−

∑
n>N η

n−N J (xnt ),
changes relative to the parameter N . This process involves
comparing the empirical returns from a state xNt to the
optimal value J (xNt ) that the controller would achieve by
acting optimally with completely known dynamics. While
the assumptions of Theorem 2 are not entirely met, such as
due to a non-smooth cost, the average suboptimality of the
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FIGURE 6. Performance of the proposed strategy in the self-develop
environment: achieved velocity and the mean and maximum
suboptimality (a), (c) in the highway scenario, and (b), (d) in the
T-junction scenario, respectively.

designed framework still decreases polynomially concerning
the number of samples, which is expressed in Figure 6.

V. CONCLUSION
The suggested framework introduces an integrated robust-
adaptive planning control system designed to ensure motion
safety for perturbed linear systems using the minimax objec-
tive function. This method incorporates a set-membership
mechanism based on recursive least squares, interval predic-
tion, and tree-based planning to ensure predicted performance
while establishing a suboptimality bound via generic costs.
With the partially known dynamical model, the flexibility
of the proposed framework is further extended through
a multi-model approach, and its efficacy is investigated
through simulation studies. Additionally, it is common
practice to estimate model parameters from observational
data, and confidence intervals are frequently available but
not fully utilized in the decision-making process. On the
other hand, the proposed approach enables the assessment
and optimization of worst possible outcomes for manifold
strategies.

However, there are certain disadvantages that need to
be improved, e.g., the reliability of these guarantees is
contingent upon the accuracy of the underlying assumptions
or the set of possible dynamics ambiguity that has to satisfy
specific properties. Specifically, Assumption 1 requires
thorough validation. If not, there is a risk that decisions based
on incorrect foundations could have severe repercussions in
such critical environments. More generally, safety analyses
can never protect against unmodeled events, such as a
package falling down or continually changing lanes.

A promising research direction will focus on the study
of the more appropriate pure exploration setting, which
aims at relating the policy suboptimality to the number of
samples used. It also overcomes the current limitations of
relying on the benefits of partially known dynamical models.

This initiative aims to efficiently exploit the utilization of
observational data and confidence intervals, thus refining
decision-making processes. Another path of interest to us
could be to leverage offline Reinforcement Learning methods
that could enable to safely improve pre-trained policies using
real driving data, especially around nominal states that can be
confidently estimated, thereby elevating the adaptability and
accuracy of the control system. A fine-tuning training process
in real conditions would involve experiencing real failures
again, though hopefully in reduced numbers, which could be
realistic under human interventions.

APPENDIX
A. PROOF OF THEOREM 1

Proof: The predictor designed in Section 2 satisfies
the inclusion property (7). Consequently, for any dynamics
A(ξ ) ∈ D̂N ,β and disturbances d ∈ [d, d], if the correspond-
ing state at time tn is bounded by xt ∈ [xn, xn], it implies that
J (xnt ) ≥ min xt ∈ [xn(u), xn(u)]J (xt ) = Jn(u) for a sequence
of controls u.

Thus, by taking the min over D̂N ,β and [d, d], we also have
for any sequence of controls u:

J (u) = min
A(ξ )∈D̂N ,β

d≤d≤d

∞∑
n=N+1

ηnJ (xnt )

≥

∞∑
n=N+1

ηnJn(u)

= Ĵ (u) (20)

And J (u) ≤ Ed
[∑

∞

n=N+1 η
nJ (xnt )

]
by definition. The proof

is completed.

B. PROOF OF THEOREM 2
Proof:We have

∥ξ − ξ̂N ,φ∥
2
GN ,φ ≥ λmin(GN ,φ)∥ξ − ξ̂N ,φ∥

2
2 (21)

where the Gramian matrix GN ,φ =
∑N

n=1 E⊤
n 0

−1En + φId ∈

Rd×d with penalty parameter φ ∈ R+
∗ and the identity matrix

Id and Remark 1 gives that the model estimation error can be
bounded

||ξ − ξ̂N ,φ || ≤ δ̃N (β) (22)

Moreover, it is propagated through the state prediction
A(ξ ). Let the jth column of a matrix M be represented as
Mj and its coefficient at position i, j denoted as Mi,j, then
((A(ξ )−A(ξ̂N ,φ))⊤(A(ξ )−A(ξ̂N ,φ)))i,j = (ξ−ξ̂N ,φ)⊤ρ⊤

i ρj(ξ−
ξ̂N ,φ) ≤ λmax(ρ⊤

i ρj)∥ξ − ξ̂N ,φ∥
2
2. Thus, the boundedness of

the estimation error is given

∥A(ξ ) − A(ξ̂N ,φ)∥2F ≤ P
(

δ̃N (β)2

λmin(GN ,φ)

)
(23)

Next, for the boundedness of the prediction error e = x − x,
a candidate Lyapunov function is selected as follow:

J = e⊤Pe (24)
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which J is non-negative definite provided that P > 0 and
X =

[
e d − d x+

+ x−
]⊤

, for any Q ∈ Rp×p, ρ, α ∈ R and
|x+

+ x−
| ≤ 2|e|. Then taking its derivative

˙J = X⊤

A⊤
NP+ PAN + Q P P|X |

P −ρIr 0
|X |

⊤P 0 −αIp

X
− e⊤Qe+ α|x+

+ x−
|
2
+ ρ|d − d |

2

≤ X⊤ϒX − e⊤Qe+ ρ∥d − d∥
2
2 (25)

where ϒ =

A⊤
NP+ PAN + Q+ 4αIp P P|X |

P −ρIr 0
|X |

⊤P 0 −αIp


As a consequence, we would have ˙J ≤ −µJ + ρ∥d −

d∥
2
2 with µ =

λmin(Q)
λmax(P)

if we had ϒ ≤ 0, Q > 0, ρ > 0. Since
J (tN ) = 0,∀t > tN , this further implies that

J (t) ≤
ρ

µ
82(t) (26)

where 8(t) = supτ∈[0,t] ∥d(τ ) − d(τ )∥2.
Next, the expression ϒ is non-positive if and only if J +

R < 0, where J =

[
A⊤
NP+ PAN + Q+ 4αIp P

P −ρIr

]
, R =

α−1
[
|X |

⊤P 0
]⊤ [

|X |
⊤P 0

]
and α > 0.

To investigate this condition, Q =
1
2Q0 − 4αIp is set.

Suppose that Assumption 4 is satisfied and P is fixed, one
obtains

λmax(R) ≤ α−1λmax(P)2λmax(|X |
⊤
|X |)

≤ α−1λmax(P)2∥X∥
2
F (27)

Next, we can obtain R ≤

[ 1
2Q0 0
0 0

]
by taking α =

2λmax(P)2∥X ∥
2
F

λmin(Q0)
. Consequently,

J + R ≤

[
A⊤
NP+ PAN + Q0 P

P −ρIr

]
< 0 (28)

Therefore, we obtainϒ ≤ 0 with such a selection ofQ and
α. Based on (26), λmin(Q0) = 2λmin(Q) + 8α, we attain the
inequality as following:

∥e(t)∥22 ≤
2ρλmax(P)

λmin(P)(λmin(Q0) − 8α)
82(t) (29)

Ultimately, the prediction error can be finally bounded as

∥e(t)∥2 ≤

(√
2ρλmax(P)

λmin(P)λmin(Q0)
+ P

(
δ̃N (β)2

λmin(GN ,φ)

))
8(t)

(30)

Meantime, we have xt ∈ [xt n(u), xn(u)] by the property (7)
that yields J (xnt ) ≤ maxJ (xt ). In addition, according to (3)
and (8), we get λmin(GN ,φ) ≥ (N −n0)ρ2+

∑
n<n0 E

⊤
n 0

−1En

and δ̃N (β) =

√
2 log

(
det(GN ,φ )1/2
β det(φId )1/2

)
+

√
φdR, one obtains

δ̃N (β)2

λmin(GN ,φ ) equivalent to log(N d/2/β)
N . Supposing that J is

L-lipschitz, then

J (u) − Ĵ (u) ≤

∞∑
n=N+1

ηn (max - min)
xt∈[xn(u),xn(u)]

J (x)

≤

∞∑
n=N+1

ηnL
∥∥xn(u) − xn(u)

∥∥
2

≤ D̃ + P
(
log(N d/2/β)

N

)
(31)

with D̃ = L
√

2ρλmax(P)
λmin(P)λmin(Q0)

∑
n>N η

n8(tn).
Finally, the consequence of Lemma 1 is utilized to account

for planning with a finite K -iteration and relate Ĵ (a⋆) to
Ĵ (aK ). The proof is completed.

C. PROOF OF THEOREM 3
Proof: Initially, the values Lma (k) and T m

a (k) signify the
lowest and highest admissible cost achieved by the possible
continuations of a sequence a, respectively. Consequently,
Lma (k) and T m

a (k) denote non-decreasing and non-increasing
functions with k , respectively, whereas Jma and Ja remain
independent of k .
Additionally, supposing that 0 ≤ J ≤ 1, then we have

ηω+ηω+1
+· · · ≈

ηω

1−η from a node of depthω. Consequently,
for any sequence of costs (Jn)n∈N came by path-tracking in
aA∞ with any dynamical models: Lma (k) =

∑ω−1
n=0 η

nJmn ≤∑
∞

n=0 η
nJmn ≤

∑ω−1
n=0 η

nJmn +
ηω

1−η = T m
a (k),∀k ≥ 0, a ∈ ℧k

of depth ω. We obtain,

min
m∈M

Lma (k) ≤ min
m∈M

∞∑
n=0

ηnJn ≤ min
m∈M

T m
a (k) (32)

It is noticeable that both sides of (32) are independent
of the specific path followed in aA∞. This independence
extends to the robust path as well, i.e., minm∈M Lmi (k) ≤

maxa∈aA∞ minm∈M
∑

∞

t=0 η
nJmn ≤ minm∈M T m

i (k), then

La(k) ≤ Ja ≤ Ta(k) (33)

In accordance with Theorem 1, the boundedness ηωK

1−η of
the simple regret εK is first introduced in [45], where ωK
denotes the depth of TK . Indeed, this feature is contingent on
the returned action being part of the deepest explored branch.
Its evidence is similarly established in (19). Accordingly,
this directly implies that the returned action is denoted as
a = i0, where i represents some node of maximal depth ωK
expanded at round k ≤ K . Then, this choice law confirms
Ta(k) = Ti(k) = maxxt∈A Txt (k) and J − Ja = Ja⋆ − Ja ≤

Ta⋆ (k) − Ja(k) ≤ Ta(k) − La(k) = Ti(k) − Li(k) =
ηωK

1−η .
Subsequently, the depth ωK of TK can be bounded with

the planning K iteration. To the end, the expanded nodes are
consistently illustrated at the subtree T∞, encompassing all
nodes of an optimal depth ω that are ηω

1−η . Consequently, the
max-backups of (16) up to the root bring Ti(k) = T∅(k) when
Ti(k) ≥ Tj(k), ∀j ∈ ℧k where a node i of depth ω is expanded
at round k .
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Applying the problem-dependent variable ν to nodes
in T∞, it is assumed that ω0 and c such that the quantity nω,
representing the number of nodes with a depth of ω ≥ ω0
in T∞, is constrained by cνω. Consequently,

K =

ωK∑
ω=0

nω = n0 +

ωK∑
ω=ω0+1

nω ≤ n0 + c
ωK∑

ω=ω0+1

νω (34)

We consider two scenarios: ν = 1 and ν > 1. Firstly,
the regret can be bounded as εK ≤ P

(
ηKc

)
due to K ≤

n0 + c(ωK − ω0) when ν = 1. In the case of ν > 1, the

boundedness value εK ≤
ηωK

1−η =
1

1−η

(
(K−n0)(ν−1)

cνω0+1

) log η
log ν

≤

P
(
K−

log 1/η
log ν

)
due to K ≤ n0 + cνω0+1 νωK−ω0−1

ν−1 and ωK ≥

ω0 + logν
(K−n0)(ν−1)

cνω0+1 . The proof is completed.
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