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A B S T R A C T

Appropriate weight initialization settings, along with the ReLU activation function, have become cornerstones
of modern deep learning, enabling the training and deployment of highly effective and efficient neural
network models across diverse areas of artificial intelligence. The problem of ‘‘dying ReLU,’’ where ReLU
neurons become inactive and yield zero output, presents a significant challenge in the training of deep neural
networks with ReLU activation function. Theoretical research and various methods have been introduced
to address the problem. However, even with these methods and research, training remains challenging for
extremely deep and narrow feedforward networks with ReLU activation function. In this paper, we propose a
novel weight initialization method to address this issue. We establish several properties of our initial weight
matrix and demonstrate how these properties enable the effective propagation of signal vectors. Through a
series of experiments and comparisons with existing methods, we demonstrate the effectiveness of the novel
initialization method.
1. Introduction

Training neural networks have enabled dramatic advances across
a wide variety of domains, notably image recognition (Krizhevsky,
Sutskever, & Hinton, 2012), natural language processing (Radford,
Narasimhan, Salimans, & Sutskever, 2018) and generative models
(Goodfellow et al., 2014). Numerous well-known neural networks
belong to the family of feedforward neural networks (FFNNs), which
are used for input–output mapping. Traditionally, FFNN connection
weights are optimized by the back-propagation algorithm (Rumelhart,
Hinton, & Williams, 1986). In the early stages of research on FFNNs,
the networks with one or a limited number of hidden layers, which are
now referred to as shallow networks, were common. Consequently, ex-
tensive research was conducted to understand their properties. Notably,
these networks have been demonstrated to serve as general function
approximators (Cybenko, 1989; Hornik, 1991; Hornik, Stinchcombe, &
White, 1989; Leshno, Lin, Pinkus, & Schocken, 1993). Deeper networks,
with their multiple hidden layers, have shown enhanced performance
in tasks requiring high levels of pattern recognition, such as image and
speech analysis (Srivastava, Greff, & Schmidhuber, 2015). However,
as the depth of FFNNs increases, the problem of the vanishing gra-
dient becomes more pronounced (Bengio, Simard, & Frasconi, 1994).
This occurs because the network weights receive updates based on
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the derivative of the error during training. In certain situations, the
gradient becomes extremely small, making it almost impossible for
weights to change, and in severe cases, it can halt the training process
altogether.

The rectified linear unit (ReLU) is one of the most widely-used
activation functions in the field of deep learning due to its superior
training performance compared to other activation functions (Sun,
Wang, & Tang, 2015). The phenomenon known as “dying ReLU’’ is a
type of vanishing gradient issue when ReLU neurons become inactive
and an output of 0 for any input (Nair & Hinton, 2010). It has been
widely recognized as a major obstacle to training deep neural networks
with ReLU activation function (Agarap, 2018; Trottier, Giguere, &
Chaib-Draa, 2017). To address this issue, several methods have been
introduced. These methods can be broadly classified into three general
approaches. The first approach is to change network architectures,
including the activation functions (Apicella, Donnarumma, Isgrò, &
Prevete, 2021; Clevert, Unterthiner, & Hochreiter, 2015; Dubey, Singh,
& Chaudhuri, 2022; Duch & Jankowski, 1999). Another approach in-
volves various normalization techniques (Ba, Kiros, & Hinton, 2016;
Ioffe & Szegedy, 2015; Salimans & Kingma, 2016). The third approach
specifically is to study the weights and biases initialization with fixed
network architectures (Glorot & Bengio, 2010; He, Zhang, Ren, & Sun,
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2015; Saxe, McClelland, & Ganguli, 2013). The third approach is the
topic of our research in this paper.

Numerous papers have discussed various weight initialization meth-
ods for neural networks and emphasized their importance (Sutskever,
Martens, Dahl, & Hinton, 2013). The most popular weight initializa-
tions are Xavier initialization (Glorot & Bengio, 2010) and Kaiming
initialization (He et al., 2015). Both methods adjust the variance of
the initial weight matrix to prevent the vanishing/exploding problem,
enabling deeper networks to be trained. Saxe et al. (2013) discuss
an orthogonal initialization method based on an orthonormal basis.
ZerO initialization (Zhao, Schäfer, & Anandkumar, 2021) which is
fully deterministic initialization has benefits in training extremely deep
neural networks without batch normalization. ZerO initialization uti-
lizes Hadamard transforms to break the training degeneracy. For more
details, see the review paper (Narkhede, Bartakke, & Sutaone, 2022)
and references therein.

Although deep and wide networks are popular and the most success-
ful in practice, deep and wide networks need high computational costs
to train a huge number of parameters. On the other hand, deep and nar-
row networks also play important roles theoretically and practically. As
demonstrated in He, Li, Xu, and Zheng (2018), deep and narrow ReLU
networks are essential when creating finite element basis functions.
This application highlights the use of deep ReLU networks in finite
element methods for solving partial differential equations. Additionally,
various theoretical studies (Cai, 2022; Hanin & Sellke, 2017; Park, Yun,
Lee, & Shin, 2020; Petersen & Voigtlaender, 2018; Yarotsky, 2017)
exploring the expressive power of ReLU networks heavily depends
on deep and narrow networks for approximating polynomials through
sparse concatenations.

Weight initialization methods have been developed to prevent the
dying ReLU problems in deep and narrow FFNNs with the ReLU activa-
tion function. Lu, Shin, Su, and Karniadakis (2019) provided rigorous
proof that as the depth of a deep FFNNs with ReLU activation function
approaches infinity, it will eventually become inactive with a certain
probability. Then they propose a randomized asymmetric initializa-
tion (RAI) designed to prevent the dying ReLU problem effectively.
Burkholz and Dubatovka (2019) calculated the precise joint signal out-
put distribution for FFNNs with Gaussian weights and biases, without
relying on mean field assumptions, and analyzed deviations from the
mean field results. They further discussed the limitations of the stan-
dard initialization method, such as its lack of dynamical isometry, and
proposed a simple alternative weight initialization method, namely, the
Gaussian submatrix initialization (GSM). These studies have improved
training performance in deep and narrow feedforward ReLU networks.
Despite these advancements, our experiments show that existing meth-
ods did not perform well in extremely deep or narrow scenarios. To
overcome the problem, this article proposes a novel weight initializa-
tion method for FFNNs with ReLU activation functions. The proposed
weight initialization has several properties such as orthogonality, pos-
itive entry predominance, and fully deterministic. Furthermore, due
to the properties of the proposed initial weight matrix, it effectively
transmits signals even in deep and narrow FFNNs with ReLU activation.

We empirically benchmarked our proposed weight initialization
method on MNIST (LeCun, Bottou, Bengio, & Haffner, 1998) and Fash-
ion MNIST datasets comparing to other weight initialization methods
such as Xavier (Glorot & Bengio, 2010), He (He et al., 2015), Orthog-
onal (Saxe et al., 2013), Identity, ZerO (Zhao et al., 2021), RAI (Lu
et al., 2019), and GSM (Burkholz & Dubatovka, 2019). Initially, we
applied our proposed weight initialization method to various dataset
sizes of FFNN models using ReLU activation functions. Our method sig-
nificantly improves validation accuracy in the models with no hidden
layers or in narrower networks with fewer nodes, clearly outperforming
other initialization methods. Moreover, various computational exper-
iments show that the proposed method holds depth independence,
width independence, and activation function independence. For depth
2

independence, experiments were conducted on both the MNIST and 𝐱
Fashion MNIST datasets and tabular datasets like the Wine Quality
dataset (Cortez, Cerdeira, Almeida, Matos, & Reis, 2009), and the
Iris dataset (Fisher, 1988). It demonstrated that the proposed method
performs well for depth independence, excelling in training deep feed-
forward neural networks across different numbers of layers. Also, it was
shown that our method holds width independence, effectively training
networks with various numbers of nodes per layer. It achieved robust
validation accuracy and rapid convergence, even in network configu-
rations that traditionally challenge other weight initialization methods.
Moreover, our method demonstrated independence from activation
functions in the ReLU family. The preceding experiments underscore
that the proposed initialization method is more independent of network
architecture.

A. Contributions

In this paper, we propose a novel weight initialization method in ex-
tremely deep and narrow feedforward neural networks (FFNNs) with a
rectified linear unit (ReLU) activation function. The main contributions
of this paper are summarized as follows.

• We propose a novel weight initialization method that prevents the
dying ReLU problem in extremely deep and narrow FFNNs with
ReLU activation function.

• We analyze the properties of the proposed initial weight matrix.
We demonstrated orthogonality and the absolute value of column
sum of 𝐐𝜖 is less or equal to 𝜖. Furthermore, we show that 𝐖𝜖

with a constant row (or column) sum. We also show that 𝐖𝜖𝐱
has more positive entries.

• We conducted experiments applying our proposed method and
existing methods in various scenarios.

. Organization and notations

The remainder of this paper is organized as follows. In Section 2,
e present existing weight initialization methods and introduce our
roposed weight initialization method. Next, various properties of the
roposed initial weight matrix are provided in Section 3. Section 4
resents simulation results. Finally, conclusions are drawn in Section 5.
Notations: Let R be the set of real numbers and R+ be the set of

onnegative real numbers. The standard inner product of two vectors 𝐮
nd 𝐯 is denoted by ⟨𝐮, 𝐯⟩, and ‖𝐯‖ denotes the Euclidean norm. Denote
he 𝑚 × 𝑛 matrix whose all entries are ones as 𝐉𝑚×𝑛 and denote the
× 𝑛 matrix with ones on the main diagonal and zeros elsewhere as

𝑚×𝑛. For 𝑚 = 𝑛 we simply denote 𝐈𝑚 and 𝐉𝑚 instead of 𝐈𝑚×𝑚 and 𝐉𝑚×𝑚,
espectively. Denote 𝟏𝑚 = [1 1 ⋯ 1]𝑇 ∈ R𝑚. However, if the size is
lear from context, we will drop 𝑚 from our notation for brevity. 𝐞𝑗
𝑗 = 1,… , 𝑚) denotes the vector in R𝑚 with a 1 in the 𝑗th coordinate

and 0’s elsewhere. (⋅) represents the big 𝑂 notation.

. Methodology

Before introducing our proposed weight initialization method, we
riefly give basic concepts and prior work.

.1. Basic conceptions

Let 𝐾 pairs of training samples {(𝐱𝑖, 𝐲𝑖)}𝐾𝑖=1, where 𝐱𝑖 ∈ R𝑁𝑥 is
raining input and 𝐲𝑖 ∈ R𝑁𝑦 is its corresponding output. Here, 𝑁𝑥
nd 𝑁𝑦 are the number of nodes in the input layer and output layer,
espectively. The result 𝐲𝑖 will be a vector with continuous values in the
ase of regression problems, a binary one-hot vector for classification
roblems, and so forth. An FFNN with 𝐿 layers performs cascaded
omputations of
𝓁 𝓁 𝓁 𝓁−1 𝓁 𝑁𝓁
= 𝑓 (𝐳 ) = 𝑓 (𝐖 𝐱 + 𝐛 ) ∈ R for all 𝓁 = 1,… , 𝐿,
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where 𝐱𝓁−1 ∈ R𝑁𝓁−1 is the input feature of 𝓁th layer, 𝐖𝓁 ∈ R𝑁𝓁×𝑁𝓁−1

is the weight matrix, 𝐛𝓁 ∈ R𝑁𝓁 is the bias vector for each 𝓁 = 1,… , 𝐿,
and 𝑓 (⋅) is an element-wise activation function. To gain good estimation
of 𝐲 for any test sample 𝐱, FFNNs optimization aims to find optimal
solutions of network parameters 𝛩 = {𝐖𝓁 ,𝐛𝓁}𝐿𝓁=1. In other words,
training is the process of solving the following equation:

min
𝛩

({(𝐱𝑖, 𝐲𝑖)}𝐾𝑖=1;𝛩),

where  is a training loss function.
The network parameters 𝛩 = {𝐖𝓁 ,𝐛𝓁}𝐿𝓁=1 are usually optimized

using gradient descent. The gradient descent updates the network
parameter with an initialization as follows: for each 𝑡 = 0, 1, 2,…,

𝐖𝓁(𝑡 + 1) = 𝐖𝓁(𝑡) − 𝜂 𝜕
𝜕𝐖𝓁(𝑡)

(𝓁 = 1,… , 𝐿),

𝐛𝓁(𝑡 + 1) = 𝐛𝓁(𝑡) − 𝜂 𝜕
𝜕𝐛𝓁(𝑡)

(𝓁 = 1,… , 𝐿),

where 𝜂 > 0 is the learning rate. There exist variants of gradient
descents such as stochastic gradient descents (SGD), ADAM (Kingma
& Ba, 2014), AdaGrad (Duchi, Hazan, & Singer, 2011), and so on.

2.2. Prior work

Weight initialization plays a critical role in training neural net-
works, significantly influencing model convergence and learning per-
formance (Narkhede et al., 2022). Selecting an appropriate initializa-
tion method is vital for improving a model’s efficiency and perfor-
mance. These initialization methods affect the convergence rate and
training stability of learning algorithms like gradient descent. Among
well-known approaches are the Xavier and He initialization methods.
These research efforts involve scaling the initial weights to maintain
the variance of input and output layers or control the variance of
the output layer to a desired value. They also focus on preserving
the variance of gradients during training, all of which contribute to
more effective and stable neural network training. However, choosing
the right variance for weight initialization becomes increasingly com-
plex, particularly with a growing number of layers. Addressing these
challenges, Zhao et al. (2021) introduced ZerO, a fully deterministic
initialization method. The method initializes network weights to either
zeros or ones. This novel method is grounded in identity and Hadamard
transforms, serving as a replacement for the traditional random weight
initialization. ZerO offers numerous advantages, including the ability
to train exceptionally deep networks without requiring batch normal-
ization. The orthogonal initialization method employs an orthogonal
matrix for weight initialization (Saxe et al., 2013). The method ensures
that the singular values of the input–output Jacobian are approximately
equal to 1. This condition, known as dynamical isometry, allows for
consistent learning times that are not dependent on the depth of the
neural networks. Although deep and wide networks are effective and
popular, they incur high computational costs from their extensive
parameters. Conversely, deep and narrow networks hold substantial
theoretical and practical significance. They are essential in creating
finite element basis functions, particularly in applications like solving
partial differential equations, as shown in He et al. (2018). Moreover, a
variety of theoretical investigations (Cai, 2022; Hanin & Sellke, 2017;
Park et al., 2020; Petersen & Voigtlaender, 2018; Yarotsky, 2017)
into the expressive power of ReLU networks rely heavily on deep and
narrow networks to approximate polynomials efficiently through sparse
concatenations. Yet, the “dying ReLU’’ problem remains a significant
obstacle in training deep and narrow FFNNs. Lu et al. (2019) rigor-
ously proved that as the depth of deep FFNNs with ReLU activation
function tends toward infinity, it will eventually become inactive with
a certain probability. They also introduced a randomized asymmetric
initialization method (RAI) to effectively address the dying ReLU prob-
lem. Burkholz and Dubatovka (2019), on the other hand, calculated
the precise joint signal output distribution for FFNNs with Gaussian
3

weights and biases. Without relying on mean-field assumptions, they
analyzed deviations from the mean-field results and discussed the limi-
tations of the standard weight initialization method. They proposed an
alternative weight initialization approach known as Gaussian submatrix
initialization (GSM). However, the methods proposed so far have shown
limited effectiveness in extremely deep and narrow FFNNs. To address
this issue, we propose a new weight initialization method.

2.3. Proposed weight initialization method

Our proposed weight initialization method can be characterized
by key properties: orthogonality, positive entry predominance, and
fully deterministic. Proposition 1 establishes that the proposed initial
weight matrix is orthogonal. Orthogonal weight initialization, exten-
sively studied both theoretically and empirically, has been shown to
accelerate convergence in deep linear networks through the attainment
of dynamical isometry (Advani, Saxe, & Sompolinsky, 2020; Hu, Xiao,
& Pennington, 2020; Saxe et al., 2013). Our method demonstrates in
Proposition 2 that the initial weight matrix’s entry sum of each column
(resp. row) vector is almost the same. Building on this, Corollary 1
establishes that each 𝐖𝐱 has more positive entries, thereby prevent-
ing the dying ReLU problem in deep networks. Finally, the proposed
weight initialization is fully deterministic, thus it is not dependent on
randomness.

To construct a proper initial weight matrix, we find a matrix 𝐖 ∈
R𝑚×𝑛 satisfying the following conditions:

(i) The set of all column vectors of 𝐖 is orthonormal;
(ii) 𝐖𝐱 has more positive entries for all 𝐱 ∈ R𝑛

+;
(iii) 𝐖 is a fully deterministic matrix.

To obtain such a matrix we first define 𝐐𝜖
𝑚×𝑚 by the orthogonal

atrix of a QR decomposition of

𝜖 ∶= 𝐉 + 𝜖𝐈 =

⎡

⎢

⎢

⎢

⎢

⎣

1 + 𝜖 1 ⋯ 1
1 1 + 𝜖 ⋯ 1
⋮ ⋮ ⋮ ⋮
1 1 ⋯ 1 + 𝜖

⎤

⎥

⎥

⎥

⎥

⎦𝑚×𝑚

,

here 𝜖 > 0 is a sufficiently small.
To initialize the weights of the neural networks we propose that

𝜖
𝑚×𝑛 =

(

𝐐𝜖
𝑚×𝑚

)

𝐈𝑚×𝑛
(

𝐐𝜖
𝑛×𝑛

)𝑇 . (1)

It is noteworthy that 𝐖𝜖
𝑚×𝑛 can be expressed as

𝜖
𝑚×𝑛 = 𝐪1�̂�𝑇1 + 𝐪2�̂�𝑇2 +⋯ + 𝐪𝑠�̂�𝑇𝑠 , (2)

here 𝑠 = min{𝑚, 𝑛}, and 𝐪1,… ,𝐪𝑚 are the column vectors of 𝐐𝜖
𝑚×𝑚

and �̂�1,… , �̂�𝑛 are the column vectors of 𝐐𝜖
𝑛×𝑛. Note that 𝐪1,… ,𝐪𝑚 are

orthonormal vectors in R𝑚 and �̂�1,… , �̂�𝑚 are orthonormal vectors in
R𝑛. That is, two sets of column vectors are constructed very similarly,
but they are defined in different dimensional vector spaces for 𝑚 ≠ 𝑛.
Moreover, 𝐪𝑖�̂�𝑇𝑖 is a rank-one matrix for all 𝑖.

Remark. The matrix 𝐉𝜖 = 𝐉𝑚 + 𝜖𝐈𝑚 is positive definite, specifically, the
igenvalues consist of 𝜆1 = 𝑚+ 𝜖 and 𝜆2 = 𝜖 (multiplicity is 𝑚− 1). The

corresponding eigenvector of 𝜆1 is 𝟏 and the corresponding eigenvectors
of 𝜆2 are the set of independent vectors {𝐯2,… , 𝐯𝑚} such that 𝟏 ⟂ 𝐯𝑖 for
all 𝑖 = 2,… , 𝑚. For more details on the matrix 𝐉𝜖 , see the paper B.
(2021), Choi, Kim, Lee, and Lim (2020).

We first give the proposed initial weight matrix 𝐖𝜖
𝑚×𝑛 for small

values 𝑚, 𝑛 (see Fig. 1).

Example 1. For 𝜖 = 0.01 the proposed initial weight matrix is
computed approximately as follows.

𝐖𝜖
3×2 =

⎡

⎢

⎢

−0.0829 0.9097
0.9081 −0.0993

⎤

⎥

⎥

,

⎣ 0.4106 0.4032 ⎦
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Fig. 1. A proposed initial weight matrix 𝐖𝜖
20×40 is shown via heatmap (𝜖 = 0.01). There

exists a certain pattern of values for entries of 𝐖𝜖
20×40.

𝐖𝜖
4×3 =

⎡

⎢

⎢

⎢

⎢

⎣

0.6241 −0.3762 0.6213
−0.3754 0.6242 0.6217
0.6213 0.6209 −0.3816
0.2890 0.2887 0.2862

⎤

⎥

⎥

⎥

⎥

⎦

.

Example 2. For 𝜖1 = 0.0001 and 𝜖2 = 0.1 the proposed initial weight
matrix 𝐖𝜖

𝑚×𝑛 is computed approximately as follows.

𝐖𝜖1
8×5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8581 −0.1419 −0.1419 −0.1419 0.3581
−0.1419 0.8581 −0.1419 −0.1419 0.3581
−0.1419 −0.1419 0.8581 −0.1419 0.3581
−0.1419 −0.1419 −0.1419 0.8581 0.3581
0.3581 0.3581 0.3581 0.3581 −0.6419
0.1581 0.1581 0.1581 0.1581 0.1581
0.1581 0.1581 0.1581 0.1581 0.1581
0.1581 0.1581 0.1581 0.1581 0.1581

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐖𝜖2
8×5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8618 −0.1415 −0.1413 −0.1413 0.3524
−0.1341 0.8626 −0.1374 −0.1374 0.3563
−0.1342 −0.1373 0.8626 −0.1374 0.3563
−0.1342 −0.1373 −0.1373 0.8626 0.3563
0.3559 0.3528 0.3528 0.3528 −0.6533
0.1598 0.1567 0.1567 0.1567 0.1506
0.1598 0.1567 0.1567 0.1567 0.1506
0.1598 0.1567 0.1567 0.1567 0.1506

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

3. Properties of the proposed initial weight matrix

This section presents several key properties of the proposed initial
weight matrix, accompanied by rigorous proofs. Initially, Proposition 1
establishes the orthogonality of the proposed initial weight matrix 𝐖𝜖 .
Furthermore, Theorem 1 introduces an algorithm designed to reduce
the computational complexity of 𝐖𝜖 . Proposition 2 demonstrates that
the column sums and row sums of 𝐖𝜖 are nearly identical. Building
on this, Corollary 1 shows that 𝐖𝜖𝐱 has more positive entries for any
vector 𝐱 with positive entries.

Proposition 1. Let 𝐪1,… ,𝐪𝑚 be the column vectors of 𝐐𝜖
𝑚×𝑚 and

�̂�1,… , �̂�𝑛 be the column vectors of 𝐐𝜖
𝑛×𝑛. Then it holds that

(i) if 𝑚 = 𝑛,

(𝐖𝜖
𝑚×𝑛)

𝑇𝐖𝜖
𝑚×𝑛 = 𝐖𝜖

𝑚×𝑛(𝐖
𝜖
𝑚×𝑛)

𝑇 = 𝐈,

(ii) if 𝑚 > 𝑛,

(𝐖𝜖
𝑚×𝑛)

𝑇𝐖𝜖
𝑚×𝑛 = 𝐈𝑛×𝑛,

𝐖𝜖
𝑚×𝑛(𝐖

𝜖
𝑚×𝑛)

𝑇 = 𝐪1𝐪𝑇1 + 𝐪2𝐪𝑇2 +⋯ + 𝐪𝑛𝐪𝑇𝑛 ,

(iii) if 𝑚 < 𝑛,
𝜖 𝜖 𝑇
4

𝐖𝑚×𝑛(𝐖𝑚×𝑛) = 𝐈𝑚×𝑚
(𝐖𝜖
𝑚×𝑛)

𝑇𝐖𝜖
𝑚×𝑛 = �̂�1�̂�𝑇1 + �̂�2�̂�𝑇2 +⋯ + �̂�𝑚�̂�𝑇𝑚.

(iv) (𝐖𝜖
𝑚×𝑛)

𝑇 = 𝐖𝜖
𝑛×𝑚 for all 𝑚, 𝑛.

It is easy to verify it. The proof is left to the reader.
Now, we introduce an algorithm that can reduce the computational

complexity of calculating 𝐖𝜖 . Recall that for given vectors 𝐮 and 𝐯, the
vector projection of 𝐯 onto 𝐮 is defined as

proj𝐮𝐯 ∶=
⟨𝐮, 𝐯⟩
⟨𝐮,𝐮⟩

𝐮.

QR decomposition is performed as follows. For a 𝑛 × 𝑛 matrix 𝐀 =
[𝐚1 ⋯ 𝐚𝑛], the QR decomposition is defined as

𝐀 = 𝐐𝐑 (𝐐: orthogonal matrix, 𝐑: upper triangular matrix),

where

𝐐 =
⎡

⎢

⎢

⎣

| | |

𝐪1 𝐪2 ⋯ 𝐪𝑛
| | |

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
orthogonal matrix

,

𝐑 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐪𝑇1 ⋅ 𝐚1 𝐪𝑇1 ⋅ 𝐚2 ⋯ 𝐪𝑇1 ⋅ 𝐚𝑛
0 𝐪𝑇2 ⋅ 𝐚2 ⋯ 𝐪𝑇2 ⋅ 𝐚𝑛
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐪𝑇𝑛 ⋅ 𝐚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
upper triangular matrix

.

Here, the matrices 𝐐 and 𝐑 are generated by the Gram–Schmidt process
for the full column rank matrix 𝐀 = [𝐚1 ⋯ 𝐚𝑛].

𝐮1 = 𝐚1, 𝐪1 =
𝐮1

‖𝐮1‖
,

𝐮2 = 𝐚2 − proj𝐮1𝐚2, 𝐪2 =
𝐮2

‖𝐮2‖
,

𝐮3 = 𝐚3 − proj𝐮1𝐚3 − proj𝐮2𝐚3, 𝐪3 =
𝐮3

‖𝐮3‖
,

⋮

𝐮𝑛 = 𝐚𝑛 −
𝑛−1
∑

𝑗=1
proj𝐮𝑗 𝐚𝑛, 𝐪𝑛 =

𝐮𝑛
‖𝐮𝑛‖

.

From the Gram–Schmidt process, we have the following iteration to
construct 𝐐𝜖

𝑚×𝑚.

Theorem 1. Let {𝐮𝑗}1≤𝑗≤𝑚 be defined by

𝐮1 = 𝟏 + 𝜖𝐞1 ∈ R𝑚,

𝐮𝑗 =
(

1 −

⟨

𝐮𝑗−1, 𝟏 + 𝜖𝐞𝑗
⟩

⟨

𝐮𝑗−1,𝐮𝑗−1
⟩

)

𝐮𝑗−1 + 𝜖(𝐞𝑗 − 𝐞𝑗−1) ∈ R𝑚

for each 𝑗 = 2,… , 𝑚. Then 𝑗th column vector of 𝐐𝜖
𝑚×𝑚 is expressed as

1
‖𝐮𝑗‖

𝐮𝑗 .

Proof. Let 𝐚𝑗 be the 𝑗th column vector of 𝐉𝜖 , i.e.,

𝐉𝜖 =
[

𝐚1 … 𝐚𝑛
]

=

⎡

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎣

1 + 𝜖
1
⋮
1

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

1
1 + 𝜖
⋮
1

⎤

⎥

⎥

⎥

⎥

⎦

,⋯ ,

⎡

⎢

⎢

⎢

⎢

⎣

1
1
⋮

1 + 𝜖

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦

.

Now we apply the Gram–Schmidt process to matrix 𝐉𝜖 . Then the 1st
orthogonal vector is given as

𝐮1 = 𝐚1 =

⎡

⎢

⎢

⎢

⎢

⎣

1 + 𝜖
1
⋮
1

⎤

⎥

⎥

⎥

⎥

⎦

.

Next, the 2nd orthogonal vector is constructed as

𝐮 = 𝐚 − proj 𝐚
2 2 𝐮1 2
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p

L

m

T
a

𝐜

w
|

|

|

= 𝐚2 −
⟨𝐮1, 𝐚2⟩
⟨𝐮1,𝐮1⟩

𝐮1

= 𝐚1 + 𝜖(𝐞2 − 𝐞1) −
⟨𝐮1, 𝐚2⟩
⟨𝐮1,𝐮1⟩

𝐮1

=
(

1 −
⟨𝐮1, 𝐚2⟩
⟨𝐮1,𝐮1⟩

)

𝐮1 + 𝜖(𝐞2 − 𝐞1).

𝐮𝑘 = 𝐚𝑘 −
𝑘−1
∑

𝑗=1
proj𝐮𝑗 𝐚𝑛

= 𝐚𝑘 −
𝑘−1
∑

𝑗=1

⟨

𝐮𝑗 , 𝐚𝑘
⟩

⟨

𝐮𝑗 ,𝐮𝑗
⟩𝐮𝑗

= 𝐚𝑘−1 + 𝜖(𝐞𝑘 − 𝐞𝑘−1) −
𝑘−1
∑

𝑗=1

⟨

𝐮𝑗 , 𝐚𝑘
⟩

⟨

𝐮𝑗 ,𝐮𝑗
⟩𝐮𝑗

= 𝐚𝑘−1 −
𝑘−2
∑

𝑗=1

⟨

𝐮𝑗 , 𝐚𝑘
⟩

⟨

𝐮𝑗 ,𝐮𝑗
⟩𝐮𝑗 −

⟨𝐮𝑘−1, 𝐚𝑘⟩
⟨𝐮𝑘−1,𝐮𝑘−1⟩

𝐮𝑘−1 + 𝜖(𝐞𝑘 − 𝐞𝑘−1)

= 𝐚𝑘−1 −
𝑘−2
∑

𝑗=1

⟨

𝐮𝑗 , 𝐚𝑘−1
⟩

⟨

𝐮𝑗 ,𝐮𝑗
⟩ 𝐮𝑗 −

⟨𝐮𝑘−1, 𝐚𝑘⟩
⟨𝐮𝑘−1,𝐮𝑘−1⟩

𝐮𝑘−1 + 𝜖(𝐞𝑘 − 𝐞𝑘−1)

= 𝐮𝑘−1 −
⟨𝐮𝑘−1, 𝐚𝑘⟩
⟨𝐮𝑘−1,𝐮𝑘−1⟩

𝐮𝑘−1 + 𝜖(𝐞𝑘 − 𝐞𝑘−1).

The last second equality holds from the fact that all 𝑖th (𝑖 ≥ 𝑗) entries
of 𝐮𝑗−1 are identical. □

The iteration in Theorem 1 can reduce the computational complex-
ity of 𝐖𝜖 . Through this theorem, the computational complexity of QR
decomposition is reduced from (𝑛3) to (𝑛2). Furthermore, since the
proposed initialization method is fully deterministic, it is sufficient to
compute the matrix only once for a given epsilon 𝜖 and dimension of the
matrix 𝑚, 𝑛, allowing it reused. Before demonstrating that the proposed
initial weights have nearly equal column sums and row sums, we first
establish the properties of 𝐐𝜖 .

Next, we prove the bound on the column sum of 𝐐𝜖 in Lemma 2,
and from Lemma 2, we demonstrate Proposition 2: The entry sum of
each column (resp. row) vector of 𝐖𝜖 is almost same.

Lemma 1. Let 𝐚𝑗 be the 𝑗th column vector of 𝐉𝜖 for 𝑗 = 1,… , 𝑚. Then
⟨ 𝐚𝑗
‖𝐚𝑗‖

, 𝟏
‖𝟏‖

⟩

= 𝑚 + 𝜖
√

𝑚
√

𝑚 + 2𝜖 + 𝜖2
= 1 − 𝑚 − 1

2𝑚2
𝜖2 + (𝜖3).

Furthermore, if 𝜖 → 0, then
⟨ 𝐚𝑗
‖𝐚𝑗‖

, 𝟏
‖𝟏‖

⟩

→ 1,

rovided that 𝑚 is fixed.

emma 2. Let 𝐪1,… ,𝐪𝑚 be the column vectors of 𝐐𝜖
𝑚×𝑚. Then it holds

that

⟨𝐪1, 𝟏⟩ =
𝑚 + 𝜖

√

𝜖2 + 2𝜖 + 𝑚
,

|

|

|

⟨

𝐪𝑗 , 𝟏
⟩

|

|

|

≤ 𝜖 for all 𝑗 = 2,… , 𝑚.

Proof. By QR decomposition we have

𝐉𝜖 = 𝐉 + 𝜖𝐈 = 𝐐𝜖𝐑𝜖 , (3)

where 𝐐𝜖 is the orthogonal matrix and 𝐑𝜖 is the upper triangular
atrix. By multiplying (𝐐𝜖)𝑇 and 𝟏 on both sides, it follows that

𝜖 𝑇 𝜖
5

(𝐐 ) (𝐉 + 𝜖𝐈)𝟏 = 𝐑 𝟏.
Let 𝑞𝑖𝑗 be the entry in 𝑖th row and 𝑗th column of 𝐐𝜖
𝑚×𝑚 and let 𝐪1,… ,𝐪𝑚

are the column vectors of 𝐐𝜖
𝑚×𝑚. Thus we have

(𝑚 + 𝜖)(𝐐𝜖)𝑇 𝟏 =

⎡

⎢

⎢

⎢

⎢

⎣

⟨𝐪1, 𝐯1⟩
⟨𝐪2, 𝐯2⟩

⋮
⟨𝐪𝑚, 𝐯𝑚⟩

⎤

⎥

⎥

⎥

⎥

⎦

, (4)

where for each 𝑘 = 1,… , 𝑚

𝐯𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚 − 𝑘 + 1
𝑚 − 𝑘 + 1

⋮
𝑚 − 𝑘 + 1

𝑚 − 𝑘 + 1 + 𝜖
⋮

𝑚 − 𝑘 + 1 + 𝜖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Let 𝑆𝑗 be the sum of all entries of 𝐪𝑗 . Then we have that for all
𝑗 = 2, 3,… , 𝑚

𝑆𝑗 =
1

𝑚 + 𝜖
⟨

𝐪𝑗 , 𝐯𝑗
⟩

= 1
𝑚 + 𝜖

((𝑚 − 𝑗 + 1)𝑞1𝑗 +⋯ + (𝑚 − 𝑗 + 1 + 𝜖)𝑞𝑗𝑗

+⋯ + (𝑚 − 𝑗 + 1 + 𝜖)𝑞𝑚𝑗 )

=
𝑚 − 𝑗 + 1 + 𝜖

𝑚 + 𝜖
𝑆𝑗 −

𝜖
𝑚 + 𝜖

(

𝑞1𝑗 +⋯ + 𝑞𝑗−1,𝑗
)

,

implying that
(

1 −
𝑚 − 𝑗 + 1 + 𝜖

𝑚 + 𝜖

)

𝑆𝑗 = − 𝜖
𝑚 + 𝜖

(

𝑞1𝑗 +⋯ + 𝑞𝑗−1,𝑗
)

.

Thus it follows that for all 𝑗 = 2, 3,… , 𝑚
|

|

|

𝑆𝑗
|

|

|

= 𝜖
𝑗 − 1

|

|

|

𝑞1𝑗 +⋯ + 𝑞𝑗−1,𝑗
|

|

|

≤ 𝜖
𝑗 − 1

(

|𝑞1𝑗 | +⋯ + |𝑞𝑗−1,𝑗 |
)

≤ 𝜖
√

𝑗 − 1
≤ 𝜖. (5)

The first inequality and the second inequality hold from the triangle
inequality and the Cauchy–Schwarz inequality, respectively. □

Proposition 2. The entry sum of each column (resp. row) vector of𝐖𝜖
𝑚×𝑛

is almost the same.

Proof. Let 𝐜𝑗 be 𝑗th column vector of 𝐖𝜖 = 𝐖𝜖
𝑚×𝑛 for each 𝑗 = 1,… , 𝑛.

hen by (2) the sum of all entries of 𝑗th column vector can be expressed
s
𝑇
𝑗 𝟏 = 𝐞𝑇𝑗 (𝐖

𝜖)𝑇 𝟏 = 𝐞𝑇𝑗
(

�̂�1𝐪𝑇1 +⋯ + 𝐪𝑠𝐪𝑇𝑠
)

𝟏,

here 𝑠 = min{𝑚, 𝑛}. So, it follows that for each 𝑗 = 1,… , 𝑛

𝐜𝑇𝑗 𝟏 − 𝐞𝑇𝑗 �̂�1𝐪
𝑇
1 𝟏

|

|

|

= |

|

|

𝐞𝑇𝑗 (𝐖
𝜖)𝑇 𝟏 − 𝐞𝑇𝑗 �̂�1𝐪

𝑇
1 𝟏

|

|

|

= |

|

|

𝐞𝑇𝑗
(

�̂�2𝐪𝑇2 +⋯ + 𝐪𝑠𝐪𝑇𝑠
)

𝟏||
|

≤ |

|

|

𝐞𝑇𝑗 �̂�2
|

|

|

|

|

|

𝐪𝑇2 𝟏
|

|

|

+⋯ + |

|

|

𝐞𝑇𝑗 �̂�𝑠
|

|

|

|

|

|

𝐪𝑇𝑠 𝟏
|

|

|

= |

|

|

𝑞𝑗2
|

|

|

|

|

⟨𝐪2, 𝟏⟩|| +⋯ + |

|

|

𝑞𝑗𝑠
|

|

|

|

|

⟨𝐪𝑠, 𝟏⟩||
≤ |

|

|

𝑞𝑗2
|

|

|

𝜖
√

1
+⋯ + |

|

|

𝑞𝑗𝑠
|

|

|

𝜖
√

𝑠 − 1

≤ 𝜖
√

1
1
+⋯ + 1

𝑠 − 1

√

|

|

|

𝑞𝑗2
|

|

|

2
+⋯ + |

|

|

𝑞𝑗𝑠
|

|

|

2

= 𝜖
√

𝐻𝑠−1 ≈ 𝜖
√

log(𝑠 − 1),

where 𝑞𝑖𝑗 is the (𝑖, 𝑗)-entry of 𝐐𝜖
𝑛×𝑛 and 𝐻𝑘 is the 𝑘th harmonic number.

The last equality holds from the fact that �̂�1,… , �̂�𝑛 are the column vec-
tors of the orthogonal matrix 𝐐𝜖

𝑛×𝑛, and the last inequality holds from
the Cauchy–Schwarz inequality and by (5) the second last inequality

holds.
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Fig. 2. This shows its effectiveness of positive signal propagation for each weight
matrices 𝐖 ∈ R200×100. For 25 random vectors 𝐱 ∈ R100, the entry values of 𝐖𝐱 are
plotted. Here, the 𝑥-axis represents the indices of all entries.

In a similar way, one can check that for each 𝑖 = 1,… , 𝑚 it holds
that
|

|

|

𝐫𝑇𝑖 𝟏 − 𝐞𝑇𝑖 𝐪1�̂�
𝑇
1 𝟏

|

|

|

≤ 𝜖
√

𝐻𝑠−1,

where 𝐫𝑖 be the 𝑖th row vector of 𝐖𝜖 for each 𝑖 = 1,… , 𝑚. □

Now, we have established that the entry sum of each column vector
of 𝐖𝜖

𝑚×𝑛 is almost the same. Note that the entry sum of a given column
vector can be expressed as the inner product of the column vector and
𝟏. It means that the column vectors of 𝐖𝜖

𝑚×𝑛 are located in the vicinity
of a plane that forms a specific angle with the vector 𝟏.

The challenges associated with training deep neural networks using
ReLU arise from the limitation that negative signals cannot propagate
through the network. Our proposed weight matrix can make positive
signals propagate through the network. Firstly, let us give experimental
results for positive signal propagation with the proposed weight matrix
and a Gaussian random matrix, orthogonal matrix. We set 𝐖 ∈ R200×100

as our proposed initial weight matrix with 𝜖 = 0.1, a Gaussian random
matrix with a mean of 0 a standard deviation of 0.1, and an orthogonal
matrix. The positive signals 𝐱 ∈ R100 are generated from (i) normal
distribution  (0.5, 0.252) and (ii) uniform distribution [0,1]. For a
random vector 𝐱 ∈ R100, the entry values of 𝐖𝐱 are computed over 25
times for each weight matrices. The computational results confirm that
our proposed weight initialization method consistently yields a higher
number of positive entries in 𝐖𝐱 than other matrices, demonstrating its
effectiveness in facilitating signal propagation in networks with ReLU
activation (see Fig. 2).

Now, we provide a theoretical analysis demonstrating that 𝐖𝜖𝐱
contains a higher number of positive entries.
6

Theorem 2. Let 𝐖𝜖 ∈ R𝑁1×𝑁𝑥 with sufficiently small 𝜖 be a given. Then
it holds that for all 𝐱 ∈ R𝑁𝑥

1
𝑁𝑥

⟨

𝐱, 𝟏𝑁𝑥

⟩

≃

√

𝑁1
𝑁𝑥

1
𝑁1

⟨

𝐖𝜖𝐱, 𝟏𝑁1

⟩

.

Proof. Since the proposed weight matrix 𝐖𝜖 ∈ R𝑁1×𝑁𝑥 holds orthog-
onality, it holds that
1
𝑁𝑥

⟨

𝐱, 𝟏𝑁𝑥

⟩

= 1
𝑁𝑥

⟨

𝐖𝜖𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩

= 1
𝑁𝑥

⟨

(𝐪1�̂�𝑇1 + 𝐪2�̂�𝑇2 +⋯ + 𝐪𝑠�̂�𝑇𝑠 )𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩

= 1
𝑁𝑥

⟨

𝐪1�̂�𝑇1 𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩

+ 1
𝑁𝑥

𝑠
∑

𝑖=2

⟨

𝐪𝑖�̂�𝑇𝑖 𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩

≃ 1
𝑁𝑥

⟨

𝐪1�̂�𝑇1 𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩

,

where 𝑠 = min{𝑁𝑥, 𝑁1}. The last approximate equality holds from that
|

|

|

|

|

1
𝑁𝑥

𝑠
∑

𝑖=2

⟨

𝐪𝑖�̂�𝑇𝑖 𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩|

|

|

|

|

≤
𝜖
√

𝐻𝑠−1

𝑁𝑥

⟨

𝟏𝑁1
,𝐖𝜖𝐱

⟩

=
𝜖
√

𝐻𝑠−1

𝑁𝑥

𝑁1
∑

𝑗=1

⟨

𝐫𝑗 , 𝐱
⟩

≤
𝜖
√

𝐻𝑠−1

𝑁𝑥

𝑁1
∑

𝑗=1
‖𝐱‖ ,

where 𝐫𝑗 be the 𝑗th row vector of 𝐖𝜖 for each 𝑗 = 1,… , 𝑁1. The first
inequality holds from Proposition 2, and the last inequality holds from
orthogonality and Cauchy–Schwarz inequality. Then by Proposition 2
it follows that
1
𝑁𝑥

⟨

𝐪1�̂�𝑇1 𝟏𝑁𝑥
,𝐖𝜖𝐱

⟩

= 𝐶
(

𝑁1
1
𝑁1

⟨

𝟏𝑁1
,𝐖𝜖𝐱

⟩

+ (𝜖2 + 𝜖𝑁𝑥) ⟨𝐞1,𝐖𝜖𝐱⟩
)

≃

√

𝑁1
𝑁𝑥

1
𝑁1

⟨

𝟏𝑁1
,𝐖𝜖𝐱

⟩

,

where 𝐶 =
𝑁𝑥 + 𝜖

𝑁𝑥
√

𝜖2 + 2𝜖 +𝑁1
√

𝜖2 + 2𝜖 +𝑁𝑥

. □

Corollary 1. Given that 𝜖 is sufficiently small. Then the angle 𝜃1 between
the one vector 𝟏 and 𝐱 in R𝑁𝑥 is nearly identical to the angle 𝜃2 between
the one vector 𝟏 and 𝐖𝜖𝐱 in R𝑁1 .

Proof. Note that the orthogonality of 𝐖𝜖 implies that ‖𝐖𝜖𝐱‖ = ‖𝐱‖.
Therefore, by Theorem 2 one can see that

cos 𝜃2 =

⟨

𝐖𝜖𝐱, 𝟏𝑁1

⟩

‖𝐖𝜖𝐱‖ ‖‖
‖

𝟏𝑁1
‖

‖

‖

≃

√

𝑁𝑥
𝑁1

⟨

𝐱, 𝟏𝑁𝑥

⟩

‖𝐱‖ ‖‖
‖

𝟏𝑁1
‖

‖

‖

= cos 𝜃1. □ □

Theorem 2 states that the average of 𝐱 is linearly preserved in 𝐖𝜖𝐱,

where the proportion is almost
√

𝑁1
𝑁𝑥

. As demonstrated in Fig. 2, the
average of 𝐖𝜖𝐱 is approximately 0.35, which is almost equal to the

product of 𝐱’s average of 0.5 and
√

𝑁1
𝑁𝑥

=
√

100
200 ≈ 0.7. Corollary 1 states

that the angle between 𝐱 and the one vector is preserved in the angle
between 𝐖𝜖𝐱 and the one vector. If the entries of 𝐱 are all positive, then
the angle between the one vector and 𝐱 is acute. Corollary 1 implies that
the orthant in which 𝐖𝜖𝐱 resides will predominantly be composed of
positive values.

Now we consider a deep network of depth 𝓁 with linear activation
function and zero bias. According to the definition of the proposed
initial weight matrix, the following equation is satisfied.

𝐲 = 𝐖𝜖
𝑁𝓁×𝑁𝓁−1

⋯𝐖𝜖
𝑁1×𝑁𝑥

𝐱 = 𝐖𝜖
𝑁𝓁×𝑁𝑥

𝐱.

It means that regardless of the network’s depth, 𝐲 satisfies Theorem 2
and Corollary 1, provided that 𝜖 is sufficiently small.



Neural Networks 176 (2024) 106362H. Lee et al.
Table 1
This is a comparison of the validation accuracy for feedforward neural networks (FFNNs) with various weight initialization methods. Here, (⋅) represents the number of nodes in
a single hidden layer. The simulations are performed with datasets MNIST and FMNIST over 10 epochs and 100 epochs. Best results are marked in bold.

Entire dataset

Proposed Orthogonal Xavier He Zero Identity RAI GSM

Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

MNIST (0) 88.2 88.5 88.1 88.7 86.6 87.7 87.9 89.1 88.1 88.8 88 89.1 88 88.2 87.1 89.4
FMNIST (0) 80.4 80.6 79.6 79 79.5 78.1 79.5 80.1 78.1 80.4 78.4 80.3 79.1 80.4 75.8 80
MNIST (512) 96.5 97.6 95.8 96.3 95.8 96.5 96.4 96.6 95.1 96.5 96.2 96.5 95.9 97.5 88 89.4
FMNIST (512) 84.5 85.1 84.4 85.4 84.5 84.5 84.2 85.1 84.5 84.6 84.8 84.9 84.9 85.2 78.3 80.3
MNIST (16) 92.2 94 88 90 83.5 86 77.2 85.5 60.1 84.2 38.7 40.5 91 92.1 29 77.1
FMNIST (16) 82.3 84.2 61.1 67.3 56.4 69.2 53.3 60.7 60.1 83.1 78.1 81.2 60 78.4 34.9 37.3

4 samples per class

Proposed Orthogonal Xavier He Zero Identity RAI GSM

Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

MNIST (0) 55.5 54.1 29.1 39.7 26.1 40.5 23.1 38.7 51.1 50.8 54.2 53.5 27.6 43.8 26.1 45.6
FMNIST (0) 54.2 57.1 42.7 51.4 29.5 48.1 34.2 51.1 51 50.1 52.8 56.1 36.5 53.9 33.7 51.4
MNIST (512) 56.5 51.0 49.7 50.1 44.3 45.2 46.5 48.9 22 46.3 51.9 50.8 29.9 38.8 23.3 37.2
FMNIST (512) 46.7 55.6 51 56 54 54.6 51 56.8 37.1 50.4 45.2 53.4 48.7 56.2 45.1 53.6
MNIST (16) 51.2 52.9 22.5 31.7 18.7 26.3 20 25 9.1 10.3 9.6 10.3 13.7 25.1 11.9 18.8
FMNIST (16) 43.3 56.3 23.4 24.7 18.8 17.8 20 20.8 10.8 10.7 33.3 41.5 14.9 21 10.6 26.4

2 samples per class

Proposed Orthogonal Xavier He Zero Identity RAI GSM

Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

MNIST (0) 46.4 46.5 23.7 31.6 19.6 30.1 20.7 28.7 42.6 43.3 44.1 43.6 26.3 37.8 21.2 34.5
FMNIST (0) 49.1 50.3 38.3 43.3 31.4 41.7 27.5 38.6 43 46.1 45.5 42.7 36 40 38.2 44.7
MNIST (512) 39.7 37.1 33.8 36.3 32.7 33.1 39.3 39.1 27.2 33.4 45.9 45.4 38.5 42.4 37.7 41.1
FMNIST (512) 46.8 46.2 45 48.4 43.4 44.7 42.4 51.2 34.7 43.8 44,2 47.8 38.8 39.9 40.1 42.6
MNIST (16) 44.3 41.5 19.7 23.6 16.6 21.6 19.3 22.2 10.1 11 9.6 9.5 11.2 22.8 12.5 22.6
FMNIST (16) 43.8 47.9 22.1 26.1 18.6 20 19.4 22.7 9.9 10.5 29.1 39.6 24 26.6 13.4 21.9

1 samples per class

Proposed Orthogonal Xavier He Zero Identity RAI GSM

Datset 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

MNIST (0) 37.1 38.2 20.6 23.9 29.1 36.9 25.4 33.8 9.7 33 12.6 12.4 19.1 23.6 23.1 27.4
FMNIST (0) 43.5 39.4 30.3 33.7 27.4 30.8 24.6 35.8 9.7 25.8 40.7 40.6 18 33.7 34.5 40.6
MNIST (512) 36.1 34.9 28.2 27.7 31.2 32.3 27 27.4 22.2 29.8 39.2 40.3 32.5 29.3 31.6 36.6
FMNIST (512) 39.2 37.4 36.7 34.7 38.5 37.6 36.1 35 31.7 37 0.3 3.4 39 37.2 35.2 36
MNIST (16) 33.5 34.2 16.5 19.4 14.3 16.8 14.3 19.9 10.6 11.6 10 9.8 18.1 22.6 18.4 19.8
FMNIST (16) 35 34.2 18.7 22.9 16.1 16.8 19.8 22.8 10.3 10.5 7 7.2 13.7 19.7 15.9 21.9
Fig. 3. Validation accuracy for FFNNs with ReLU activation is presented across varying depths. (a) and (b) investigate networks where all hidden layers maintain the same
dimension. (c), (d), and (e) investigate networks consisting of a layer with 10 nodes and a layer with 6 nodes, repeated throughout the structure.
7
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4. Experimental results

In Section 4.1, we describe the experimental environment, bench-
mark datasets, and the methods compared in this paper. In Section 4.2,
we introduce existing methods that effectively prevent the dying ReLU
problem in deep and narrow FFNNs with ReLU activation function,
and we present the settings used for each method in our experi-
ments. Section 4.3 presents the results from experiments across diverse
dataset sizes and network architectures. In Section 4.4, we experiment
to investigate the trainability of networks at various depths. In Sec-
tion 4.5, we conduct experiments to determine the feasibility of training
on extremely narrow networks. Finally, Section 4.6 investigates the
trainability of networks at various activation functions.

4.1. Experimental settings

Section 4 analyzed a range of weight initialization methods via
a comprehensive experimental approach. We referred to our method
as ‘‘Proposed’’. As other methods, we used Xavier initialization, He
initialization, ZerO initialization, Identity initialization, Orthogonal ini-
tialization, RAI, and GSM. To assess the effectiveness of the proposed
weight initialization method, we conducted experiments on MNIST,
Fashion MNIST, Wine Quality dataset, and Iris. And 15% of the total
dataset served as the validation dataset. We trained the network using
cross-entropy loss implemented the neural network in Python with
Tensorflow, and trained the neural network on a computer with GPU
RTX TITAN. And we used Adam optimizer with a learning rate of 0.001
and a batch size of 100. Empirically setting 𝜖 = 0.1, we configured
all activation function parameters to their TensorFlow default values.
For each dataset, we maintained consistent hyperparameter settings for
all experiments. Each experiment was repeated ten times with random
seeds.

4.2. Prior weight initialization method for FFNNs

We briefly review Randomized Asymmetric Initialization (RAI) (Lu
et al., 2019) and Gaussian Submatrix Initialization (GSM) (Burkholz &
Dubatovka, 2019), both of which are designed to enhance the training
of deep and narrow feedforward neural networks. And we also present
the settings for each of them. The RAI weight initialization method is
a technique used to address the “dying ReLU’’ problem in deep FFNNs.
It involves the creation of an initialization matrix with random values
drawn from an asymmetric probability distribution. In this paper, we
employed Beta(2,1) probability distribution. And standard deviation of
the weight matrix was − 2

√

2
3
√

𝜋
+
√

1 + 8
9𝜋 ≈ 0.6007 adopting a setting

imilar to that in Lu et al. (2019). The GSM is a weight initialization
ethod for ReLU layers that ensures perfect dynamical isometry. In this
aper, we constructed the submatrix using the He initialization method.

.3. Experiments in various settings

In this section, we conducted experiments using the MNIST and
ashion MNIST datasets. We compared various initialization meth-
ds while varying the dataset size with FFNNs with ReLU activation
unction. As shown in Table 1, we measured the validation accuracy
n various settings at 10 and 100 epochs. The term ‘𝑘 samples per
lass’ indicates that each class consists of 𝑘 number of samples. We
onducted experiments for 1, 2, 4 samples per class and the entire
ataset. In the table, (0), (512), and (16) denote the number of nodes
n a single hidden layer of FFNNs with ReLU activation function. In
etail, (0) signifies an FFNN without hidden layers; (512) corresponds
o one with a single hidden layer of 512 nodes; and (16), one with

single hidden layer of 16 nodes. With no hidden layers, the pro-
osed method consistently achieved higher validation accuracy at 10
pochs, irrespective of the dataset size. Both identity initialization and
ero initialization also demonstrated high validation accuracy. Zero
8

o

nitialization is an identity matrix when the number of rows in the
eight matrix is less than the number of columns. These three weight

nitialization methods outperformed random weight initialization in
etworks without hidden layers. Furthermore, even for small values
f 𝑘, all three methods exhibited good performance. When 𝑘 equals
, the decline in accuracy observed for the proposed method on the
MNIST dataset at 100 epochs was attributed to overfitting, possibly
ue to excessively rapid convergence. An FFNN with 512 nodes can be
onsidered a wide FFNN, whereas an FFNN with 16 nodes is relatively
arrow. We conducted comparative experiments on these two FFNNs
o assess how independent our proposed method is regarding the
umber of nodes. Generally, in narrow networks with fewer nodes,
earning is less effective compared to wider networks with a larger
umber of nodes. However, the proposed weight initialization exhibited
ignificantly higher validation accuracy even with 16 nodes, surpassing
ther weight initialization methods. Contrastingly, in networks with
12 nodes, it exhibited validation accuracy similar to other weight
nitialization methods. The reason is that in the narrow network, the
ying ReLU problem is particularly detrimental to network training. To
emonstrate that the proposed method is independent of both network
epth and width, more diverse experiments are needed (Section 4.4 and
ection 4.5).

.4. Depth independent

In this section, we applied the proposed weight initialization method
o investigate its effectiveness in training deep FFNNs with the ReLU
ctivation function. We compared the proposed initialization method
ith the RAI, GSM, and ZerO methods – previously studied and proven

o perform well in training deep ReLU neural networks – using the
NIST and Fashion MNIST datasets. This experiment drew inspiration

rom the methods described in Burkholz and Dubatovka (2019), Lu
t al. (2019), Zhao et al. (2021).

The experiments were divided into two main parts: one where the
idden layers had the same dimensionality, and the other where they
ad varying dimensionality. We made this division because networks
n practice often exhibit varying dimensionalities across their layers.
ig. 3(a), (b) shows that the 𝑥-axis represents the number of hidden
ayers, while the 𝑦-axis represents the validation accuracy measured
t 10 epochs. The label 10 (resp. 4) nodes indicate that all hidden
ayers have 10 (resp. 4) nodes. The experimental results of the MNIST
ataset indicated that our proposed method demonstrated high valida-
ion accuracy, independent of the number of hidden layers and nodes.
pecifically, for configurations with 10 nodes per layer, we observed
hat RAI and GSM were effective up to 50 hidden layers, after which
hey experienced difficulty in training as the number of layers increased
o 100. ZerO initialization performed reasonably well, but when com-
ared to our proposed method, it consistently yielded lower validation
ccuracy across various numbers of hidden layers. In scenarios where
he network had only four nodes per layer, most initialization methods
truggled due to the narrow network architecture. However, our pro-
osed initialization method stood out by successfully enabling training
ven with 100 hidden layers. On the Fashion MNIST dataset, the exper-
mental results also indicated that our proposed method demonstrated
igh validation accuracy, independent of the number of hidden layers
nd nodes. In contrast, zero initialization achieved high validation
ccuracy with 10 nodes per layer but faced instability in narrower
etworks. Furthermore, RAI and GSM struggled to train networks with
0 or 100 hidden layers effectively.

In the experiments involving hidden layers with varying numbers
f nodes, the results are depicted in Fig. 3(c),(d), and (e). The network
rchitecture consisted of a layer with 10 nodes and a layer with 6 nodes,
epeated throughout the structure. For instance, a network with 20
idden layers comprised 10 node layers and 6 node layers repeated 10
imes. When the network had 40 hidden layers, the validation accuracy

f RAI and GSM across epochs exhibited significant variability. In
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Fig. 4. A validation accuracy is presented for FFNNs with two hidden layers and ReLU activation function. The 𝑦-axis (resp. 𝑥-axis) presents the number of nodes in the first
(resp. second) hidden layer. Each is trained on MNIST dataset for 10 epochs.
Fig. 5. A validation accuracy is presented for FFNNs with two hidden layers and ReLU activation function. The 𝑦-axis (resp. 𝑥-axis) presents the number of nodes in the first
(resp. second) hidden layer. Each is trained on FMNIST dataset for 1 epoch.
contrast, our proposed method maintained stable validation accuracy
during training. This trend continued as the number of hidden lay-
ers increased to 80, and it became evident that when the network
comprised 120 hidden layers, only our proposed method and zero
initialization managed to facilitate successful learning. Furthermore,
we conducted simulations on two types of tabular data, each with
fewer than 100 features: the Wine Quality Dataset (Cortez et al.,
2009) and the Iris dataset (Fisher, 1988). In further experiments, we
compared the proposed initialization method with the RAI, ZerO, He,
and Orthogonal initialization methods. We trained on the Wine Quality
Dataset (resp. the Iris Dataset) using an FFNN configured with ReLU
activation, comprising layers of 10 nodes and layers of 6 nodes, this
9

configuration being repeated 60 (resp. 100) times. The experimental re-
sults indicated that the proposed initialization method achieved higher
validation accuracy compared to other methods across both the Wine
Quality and Iris datasets. For the Wine Quality dataset at 200 epochs,
the proposed method’s validation accuracy (58%) surpassed those of
ZerO (50%), Orthogonal (40%), RAI (40%), and He (40%). In the case
of the Iris dataset, the proposed method rapidly achieved high accuracy
by the 10th epoch and maintained it. Proposed (94%), ZerO (63%),
Orthogonal (30%), RAI (38%), and He (38%) are validation accuracies
at 100 epochs for the respective methods. In summary, our method
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Table 2
A validation accuracy is presented for FFNNs with various activation functions. The FFNN comprises 120 hidden layers with a layer of 10 nodes and a layer of
6 nodes repeated 60 times each. Each is trained on MNIST (M) and FMNIST (F) datasets for 10 epochs. Best results are marked in bold.
Dataset Proposed Orthogonal Xavier He Zero Identity RAI GSM

M F M F M F M F M F M F M F M F

Tanh 11.1 10.0 14.3 9.9 11.0 9.9 11.7 9.9 10.3 9.9 27.0 9.9 16.1 10.0 12.3 13.6
Sigmoid 11.3 10.0 10.3 10.0 10.3 9.9 11.3 9.9 10.3 10.0 10.2 9.9 10.2 9.9 10.3 10.0
Selu 38.3 33.3 11.7 9.9 10.2 9.9 9.8 9.9 33.0 34.5 10.4 9.9 10.2 9.9 12.0 11.0
Gelu 83.6 68.1 65.5 10.0 11.2 10.0 11.3 10.9 76.2 65 11.3 10.0 11.0 34.0 13.1 34.4
Relu 86.7 76.5 11.3 10.0 11.3 10.1 11.3 9.9 82.9 69.4 11.3 10.0 11.3 10.0 11.3 8.6
demonstrated depth independence by achieving higher validation ac-
curacy in deep ReLU neural networks compared to other initialization
methods.

4.5. Width independent

In this section, we employed the proposed weight initialization
method to assess its effectiveness in training feedforward neural net-
works (FFNNs) with ReLU activation function, emphasizing its inde-
pendence from network width. We created FFNNs with ReLU activation
function, each consisting of two hidden layers. As shown in Figs. 4 and
5, the 𝑦-axis represents the number of nodes in the first hidden layer,
while the 𝑥-axis represents the number of nodes in the second hidden
layer. The values within the heatmap correspond to the validation
accuracy, trained for 10 epochs on the MNIST dataset, where the
accuracy is determined based on the respective numbers of nodes in
the 𝑥 and 𝑦 dimensions. The proposed method achieved a validation
accuracy of 54.3% when the number of nodes in each hidden layer
was set to 2. In contrast, other methods exhibited the lowest validation
accuracy of only 10%. Our proposed method demonstrated indepen-
dence from the number of nodes, effectively enabling the training of
narrow feedforward neural networks with ReLU activation function.
We also recorded the validation accuracy at 1 epoch of training on the
FMNIST dataset to assess the convergence speed for various network
sizes. The proposed method achieved the lowest validation accuracy of
25% among the tested architectures when the first hidden layer had
2 nodes, and the second hidden layer had 4 nodes. In contrast, the
lowest accuracy recorded by all other methods was 10%. In summary,
our proposed method demonstrated independence from the number of
nodes in FFNNs with ReLU activation function and converged faster
compared to other methods.

4.6. Activation function independent

Finally, we employed the proposed weight initialization method to
assess its effectiveness in training feedforward neural networks, empha-
sizing its independence from the activation function. Table 2 illustrates
the validation accuracy of tanh, sigmoid, ReLU (Nair & Hinton, 2010),
GeLU (Hendrycks & Gimpel, 2016), and SeLU (Klambauer, Unterthiner,
Mayr, & Hochreiter, 2017) on the MNIST and FMNIST datasets at 10
epochs. Here, GeLU and SeLU were set to their default settings in
TensorFlow. A feedforward neural network was constructed following
the same configuration used in the depth independence experiment in
Section 4.4, comprising 120 hidden layers, with a layer of 10 nodes
and a layer of 6 nodes, repeated 60 times each. Notably, for activation
functions within the ReLU family, our method outperformed other
weight initialization strategies. In particular, with the GeLU activa-
tion function, our proposed method achieved a validation accuracy of
68.1% on FMNIST, and with ReLU, it reached an accuracy of 76.5%,
demonstrating higher accuracy compared to other weight initialization
methods. Also, the proposed method showed high validation accuracy
on the MNIST dataset. With the GeLU activation function, the proposed
weight initialization method achieved an accuracy of 83.6%, and with
ReLU, it achieved an accuracy of 86.7% (see Table 2).
10
5. Conclusion

In this work, we propose a novel weight initialization method and
provide several properties for the proposed initial weight matrix. We
demonstrated the proposed matrix holds orthogonality. Moreover, it
was shown that the proposed initial matrix has constant row (or col-
umn) sum. Also, we demonstrate that our weight initialization method
ensures efficient signal transmission even in extremely deep and narrow
feedforward ReLU neural networks. Experimental results demonstrate
that the network performs well regardless of whether it is deep or
narrow, and even when there is a significant difference in the number
of nodes between hidden layers.
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