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1  Introduction
Guanidine-based antimicrobials have been widely em-

ployed for the disinfection, sterilization, and preservation 
of various products, such as food and cosmetics1－4）. The 
efficacy of polyhexamethylene guanidine（PHMG）is primar-
ily attributed to the robust interaction between the posi-
tively charged guanidine group at physiological pH and the 
negatively charged phosphatidylglycerol（PG）lipid bilayer 
in the bacterial cell membranes5－7）. In contrast, PHMG has 
negligible effects on zwitterionic lipid membranes, such as 
phosphatidylcholine（PC）and phosphatidylethanolamine
（PE）, the primary components of fish and mammalian cell 
membranes8, 9）. For these reasons, guanidine-based antimi-
crobials are believed not to harm host cells and selectively 
target only microorganisms intended for destruction.

However, a few traumatic incidents have recently killed 
or induced permanent disabilities in many people. In South 
Korea, PHMG was used as a humidifier disinfectant addi-
tive from 1998 to 2011, which resulted in more than 1,500 
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deaths10, 11）. In Russia, PHMG was used in illegally manufac-
tured vodka, affecting more than 12,500 patients12）. These 
incidents highlight significant concerns regarding the po-
tential toxicity of PHMG to humans. Recent studies have 
revealed that exposure of zebrafish to PHMG at certain 
concentrations leads to the generation of reactive oxygen 
species and the induction of pulmonary toxicity, including 
inflammation and fibrosis13－15）. Furthermore, Lim et al. re-
vealed that PHMG can strongly interact with and bind to 
PC groups via direct force measurements with a surface 
force apparatus（SFA）and adsorption studies using a Lang-
muir trough16）. These studies have raised concerns regard-
ing the potential adverse effects of guanidine-based chemi-
cals on human and aquatic health.

In conjunction with PHMG, non-guanidine antimicrobials 
such as 5-chloro-2-methylisothiazol-3（2H）-one/2-methyl-
isothiazol-3（2H）-one（CMIT/MIT）, have also received in-
creasing attention for their toxicity. CMIT/MIT has also 
been widely used as a biocide in cosmetics, humidifier dis-
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infectants, and personal care products, and recently, con-
cerns regarding lung toxicity of the CMIT/MIT have become 
an issue, especially in South Korea17－19）along with PHMG. 
PHMG has been proven to cause lung fibrosis, but the pul-
monary toxicity of CMIT/MIT is still controversial, so re-
search is actively underway to verify the toxicity of CMIT/
MIT. To assess the toxicity of CMIT/MIT, Song et al. quanti-
fied the inflammatory cell count in bronchoalveolar lavage 
fluid（BALF）after CMIT/MIT instillation in mice. They 
found that intratracheally instilled CMIT/MIT（2720 ng/g 
tissue after 5 min）increased the inflammatory cell counts 
in the BALF20）. In addition, given the wide range of prod-
ucts containing CMIT/MIT, studies have reported variations 
based on different exposure routes（nasal, inhalation, and 
ingestion）, concentrations, and forms of exposure21－23）. In 
contrast, Kim et al. reported that appropriate amounts of 
CMIT/MIT ingredients in cosmetic products applied to the 
skin are not toxic to humans24）. As one can see from these 
studies, the toxicity of CMIT/MIT may depend on the expo-
sure routes, doses, and many other factors. Thus, drawing 
a firm conclusion regarding safety is difficult and danger-
ous. However, fundamental studies on the adsorption char-
acteristics of CMIT/MIT have yet to be conducted.

Herein, rather than focusing on the actual toxicity of 
CMIT/MIT, we investigated the adsorption characteristics 
of CMIT/MIT to model pulmonary surfactants（referred to 
as lung surfactants（LS））using a Langmuir trough attached 
to a fluorescence microscope. Adsorption is the initial step 
for toxins to pass through the LS, and when other mole-
cules are adsorbed to the LS, the mechanical characteris-
tics and/or phase behavior of the LS film are known to 
change. Figure 1 represents the target system that CMIT/
MIT adsorption to pulmonary surfactant in a human body. 
By investigating the π-A isotherm changes（using a Lang-
muir trough）and imaging the lipid raft morphology changes
（using a fluorescence microscope）, we observed relatively 

small changes in the interfacial characteristics with in-
creasing concentration of CMIT/MIT from 0 to 0.1 wt％
（which is close to the concentration of PHMG and CMIT/
MIT in commercial products）, possibly indicating little ad-
sorption of CMIT/MIT to the model LS monolayer. 

2  Materials and Methods
2.1  Materials

The LS consisted of dipalmitoylphosphatidylcholine
（DPPC; Avanti Polar Lipids）, palmitoyl oleoylphosphatidyl-
glycerol（POPG; Avanti Polar Lipids）, and palmitic acid（PA; 
Avanti Polar Lipids）at a 7:2:1 wt％ ratio25, 26）. PHMG（25％ 
in water）was purchased from BOCSCI, Inc. Methyl chlo-
roisothiazolinone（CMIT, Sigma Aldrich, 99％）was diluted 
to a final concentration of 25 vol％ in deionized water
（Milli-Q）. LS was tagged with fluorescent（Texas Red）- 
labeled DHPE（N-（Texas Red sulfonyl）-1,2-dihexadecano-
yl-sn-glycero-3-phosphoethanolamine, Biotium）for lipid 
domain observation.

2.2  π-A isotherm measurement by using Langmuir trough
The Langmuir trough（KSV NIMA）was used for π-A iso-

therm measurement of the LS monolayer, and the surface 
pressure was measured using a Pt Wilhelmy plate. LS was 
dissolved in chloroform at a final 1 mg/mL concentration. 
The 20 µL of LS solution was spread by gently tipping onto 
the air/water interface in a controlled（20±1℃）Langmuir 
trough. After applying, the system was equilibrated for 15 
min to allow the solvent to evaporate. After monolayer 
preparation, the toxic chemicals were injected into the 
sub-phase with the targeted final concentrations of 0.001, 
0.005, 0.01, 0.05, and 0.1 wt％, followed by 45 min equili-
bration. The air/water interface was compressed to a 10 
mm/min target rate at a fixed barrier pressure of 50 mN/m.

Fig. 1　 Schematic images of human pulmonary surfactant and gas exchange mechanisms w/, w/o toxic molecules（PHMG and 
CMIT/MIT）.
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2.3   LS monolayer visualization using a fluorescence 
microscope

LS was mixed with 0.1 wt％ of the fluorescent Texas-
Red-labeled-DHPE to monitor the lipid domain morphology 
of the LS monolayer to provide fluorescence contrast. 
Large fluorescent molecules cannot fit into the condensed 
phases of LS monolayers; instead, they segregate into a 
disordered phase, causing the liquid-expanded（LE）and 
liquid-condensed（LC）stages to appear bright and dark, re-
spectively27）. Fluorescence images of the LS monolayer 
with fluorescence contrast caused by the phase difference 
of the lipids were recorded using a fluorescence micro-
scope（Andor）. Fluorescence microscopy was performed in 
the upright direction in the Langmuir trough（with no tem-
perature control setup）, and the surface tension gradient 
due to compression was minimized by forming an isolated 
region using a circular reservoir.

3  Results and Discussion
3.1  π-A isotherm measurement

To investigate the influence of PHMG and CMIT/MIT on 
the mechanical properties of the LS monolayer, π-A iso-
therms were measured using a Langmuir trough（Fig. 2）in 
the presence of these chemicals in the sub-phase. Figure 
2a shows the steps of π-A isotherm measurements, includ-
ing deposition, toxin injection, and compression. After de-
positing the LS monolayer, PHMG, and CMIT/MIT were in-
jected into the sub-phase at a targeted final concentration
（0.001～0.1 wt％ dissolved in water）. Upon analyzing the 
π-A isotherm of the bare LS monolayer, the typical plateau 
regime representing the LE – LC phase coexistence was 
not pronounced, in contrast to the pure DPPC lipid mono-
layers16, 28）. A kink region not present in the pure DPPC 
monolayer was observed at around 50 mN/m because 
POPG（collapse pressure, π ～48 mN/m）contained in LS 
can be squeezed out from the interface29）. 

Figure 2b shows the π-A isotherms of the LS monolayer 
at different PHMG concentrations. The π-A isotherms of 
the LS monolayer exhibited a significant increase（upward 

Fig. 2　 （a）Schematic images of experimental steps for π-A isotherm measurement using Langmuir trough. The π-A 
isotherms of LS monolayer as a function of sub-phase（b）PHMG and（c）CMIT/MIT concentration.
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shift）with increasing PHMG concentrations. This indicates 
that PHMG is bound to LS, thereby influencing the me-
chanical properties of the LS monolayer. With an increase 
in the injected PHMG concentration, the liftoff area, where 
the surface pressure started to increase during compres-
sion, increased from ～100 Å2/molecule to ～150 Å2/mole-
cule. The surface pressure in the same area also signifi-
cantly increased at all stages before the collapse. For 
example, at A＝75 Å2/molecule, π＝6.97 and 20.38 mN/m 
at 0 and 0.1 wt％, respectively. Furthermore, PHMG con-
centrations above 0.05 wt％ showed significant changes in 
the kink region. In contrast, kink showed at the same pres-
sure and area for concentrations between 0 and 0.01 wt％; 
concentrations higher than 0.05 wt％ resulted in kink 
showing at relatively higher pressures and broader areas
（～43 mM/m at 57 Å2/molecule）. This tendency seems to 
cause a kink more clearly, owing to the tendency of the flu-
idizing component present in the interface to be squeezed 
out when toxic components are present. In addition, as the 
concentration of PHMG increased, more PHMG appeared 
to exist at the interface, shifting π-A isotherm to the right. 

The procedure was repeated to examine the adsorption 
of CMIT/MIT onto the LS monolayer（Fig. 2c）. Unlike 
PHMG, there were no significant differences in π-A iso-
therms upon injection of CMIT/MIT up to 0.05 wt％, 
whereas 0.1 wt％ of CMIT/MIT leads to a lowering in a kink 
pressure from ～44 mN/m to ～37 mN/m, caused by the 
squeeze out of the fluidizing component. These results in-
dicate no noticeable adsorption of CMIT/MIT on the LS 
monolayer below a concentration of ～0.1 wt％.

3.2   Fluorescent microscopy analysis of LS monolayer 
lipid domains

Fluorescence microscopy analysis is one of the most ef-
fective instruments for visually verifying the phase transi-
tion of lipid monolayers and changes in lipid domains 
during dynamic compression at the air/water interface30－34）. 
The phase transition of the LS monolayer, which was af-
fected by compression, was visually observed under 
varying concentrations of PHMG and CMIT/MIT. Upon 
compression of LS at the air/water interface, the phase 
separation of the LS monolayer can be visualized as a lipid-
disordered（Ld）phase and lipid-ordered（Lo, also known as 
the lipid domain）phase（Fig. 3a）35）. This arises from molec-
ular area and mobility differences resulting from the struc-
tural differences between unsaturated and saturated lipid 
molecules36, 37）. It has been previously reported that upon 
binding to another molecule, the shape and size distribu-
tion of lipid domains can change34, 38, 39）. We suspected that 
if PHMG and/or CMIT/MIT attach to the LS, the lipid 
domain should have a different morphology than pure LS, 
which could be strong evidence for the binding phenome-
na.

The presence of PHMG in the sub-phase resulted in a 

distinct formation of the Lo phase, observed at the concen-
tration of 0.01 wt％ or higher in contrast to the pure LS 
monolayer where only the Ld phase exists at 0 mN/m（～
149 Å2/molecule）. Based on these observations, PHMG ap-
peared to facilitate the nucleation of the condensed phase 
in the LS monolayer. Subsequently, when the pure LS 
monolayer film was gradually compressed at a constant 
rate, the apparent contrast at the boundary of the domains 
sharply diminished at a surface pressure ＞25 mN/m（～57 
Å2/molecule）, indicating the mixing of the two different 
phases. However, this transition was observed at 0.01 wt％ 
of PHMG at a much lower surface pressure ＞15 mN/m（～
72 Å2/molecule）. The transition pressure was even lower at 
higher PHMG concentration, which was decreased to ～5 
mN/m（～107 Å2/molecule）at 0.1 wt％ PHMG（Fig. 3b）. 
This decrease in the mixing pressure with an increase in 
the PHMG concentration signifies the adsorption of PHMG 
onto the LS monolayer, reducing stability（Fig. 2b）. There-
fore, as reported previously, the surface properties and 
rheological changes induced by PHMG exposure could po-
tentially trigger alveolar instability and atelectasis40）. 

In the case of CMIT/MIT, regardless of the presence of 
CMIT/MIT in the sub-phase, the Lo phase did not distinctly 
form at 0 mN/m pressure, and only the Ld phase was 
observed（Fig. 3c）. Considering that there were no signifi-
cant differences in the domain morphologies with and 
without CMIT/MIT, we can conclude that CMIT/MIT may 
not bind to the model LS monolayer and does not promote 
the nucleation of the condensed phase. The pure LS mono-
layer and the 0.1 wt％ CMIT/MIT condition exhibited phase 
transitions at pressures exceeding 10 mN/m（～72 Å2/mole-
cule）. The different phase transition pressure from pure 
LS in Fig. 3b is anticipated to be influenced by temperature 
due to the experimental setup（Figure 3b was measured at 
T～20℃, and Figure 3c was measured at T～18℃）. Never-
theless, CMIT/MIT does not adsorb significantly onto the 
LS monolayer, making it difficult to alter the integrity of 
the LS monolayer.

4  Conclusion
In summary, we measured the changes in π-A isotherms 

and lipid raft morphology of LS monolayers upon PHMG or 
CMIT/MIT injection, using a Fluorescence Microscope-
equipped Langmuir trough to understand the adsorption 
characteristics of CMIT/MIT on a pulmonary surfactant.

1． No significant difference between π-A isotherm of LS 
monolayers is measured for relatively lower concen-
trations of CMIT/MIT, whereas high（～0.1 wt％）
CMIT/MIT concentration induced slight changes in 
π-A isotherm. In the presence of PHMG, a significant 
increase in the surface pressure（at a specific molecu-
lar area）, and a change in the kink pressure caused 
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by the toxic components of the interface were mea-
sured. 

2． Compared with the pure LS monolayer, no significant 
changes in the lipid domain morphology and mixing 

pressure were observed in the presence of CMIT/
MIT. PHMG seemed to bind to the LS monolayer 
strongly, accelerating Lo phase growth, and decreas-
ing the mixing pressure.

Fig. 3　 （a）Schematic images of experimental steps for fluorescence microscopy analysis connected to Langmuir trough（Ld

＝dark yellow; Lo phase＝green）. Fluorescence microscopy images（200×200 µm）of LS monolayer lipid domains 
during compression, showing the Ld phase（bright）and Lo phase（dark）in the presence of（b）PHMG or（c）CMIT/MIT. 
The images in which the phase transition occurred were marked with red squares.
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This in vitro study revealed for the first time that the 
two substances currently attracting attention as toxic sub-
stances have significantly different effects on the adsorp-
tion and interfacial properties of the model LS monolayer. 
Moreover, this study is significant for investigating the ad-
sorption capability of toxins to pulmonary surfactants, dis-
tinct from the conventional focus on cellular toxicity. 
Therefore, it can also serve as foundational information for 
subsequent research related to the characterization and 
evaluation of the toxicity of CMIT/MIT and PHMG, includ-
ing in vitro and in vivo toxicity validation. In addition, the 
animal-free in vitro experiments conducted in this study 
can be used as a new methodology for evaluating the 
binding of toxins to targeted lipid layers.
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