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Symmetrically pulsating bubbles swim in an
anisotropic fluid by nematodynamics

Sung-Jo Kim1,2, Žiga Kos 3,4,5, Eujin Um 1 & Joonwoo Jeong 1

Swimming in low-Reynolds-number fluids requires the breaking of time-
reversal symmetry and centrosymmetry. Microswimmers, often with asym-
metric shapes, exhibit nonreciprocal motions or exploit nonequilibrium pro-
cesses to propel. The role of the surrounding fluid has also attracted attention
because viscoelastic, non-Newtonian, and anisotropic properties of fluids
matter in propulsion efficiency and navigation. Here, we experimentally
demonstrate that anisotropic fluids, nematic liquid crystals (NLC), can make a
pulsating spherical bubble swim despite its centrosymmetric shape and time-
symmetric motion. The NLC breaks the centrosymmetry by a deformed
nematic director fieldwith a topological defect accompanying the bubble. The
nematodynamics renders the nonreciprocity in the pulsation-induced fluid
flow. We also report speed enhancement by confinement and the propulsion
of another symmetry-broken bubble dressed by a bent disclination. Our
experiments and theory propose another possible mechanism of moving
bodies in complex fluids by spatiotemporal symmetry breaking.

Low-Reynolds-number (Re≪1) hydrodynamics governs the locomo-
tion of microswimmers1,2. The Navier-Stokes equation becomes time-
independent when the viscous force dominates over the inertial force
in the low Re regime. Applying this equation to Newtonian incom-
pressible fluids, the scallop theorem implies that swimmers exhibiting
only a nonreciprocal motionmay gain net propulsion via time-reversal
symmetry breaking1,3. Examples in the nature include whip- or
corkscrew-like flagellar motions and cilia’s metachronal wave of
microorganisms1,4–6. External field-driven artificial swimmers5,7–11 and
various theoretical models, such as a swimming sheet and a three-link
swimmer, mimic the biological motions5,6,12–15. It is noteworthy that the
symmetry-breaking motions of the swimmers set their swimming
direction, i.e., the head and tail.

Microswimmers with no mechanical motions also break the
symmetries in various ways5,16–18. Self-propelling micro-objects often
generate and sustain a gradient, e.g., of chemicals and temperature,
over their anisotropic bodies imposing the head and tail. Moreover,
the gradient-generating processes, often involving chemical reactions
and external energy input, are at nonequilibrium, which inherently
breaks the time-reversal symmetry. One well-known example is an

active Janus particle with anisotropic chemical or electrical properties
in a chemically reactive medium or under external electric fields16–18.
Even with no intrinsic anisotropy, a spontaneous symmetry breaking
can also give rise to net propulsion in active emulsion and Quincke
rollers16,19–21. It is no surprise that many studies have focused on the
understanding and design of symmetry breaking by the micro-
swimmers themselves.

Deploying complex fluids environment is another strategy to
achieve symmetry breaking and even guide their swimming direction.
For instance, an artificial scallop can swim despite its reciprocal motion
exploiting time-asymmetricmotions innon-Newtonianfluids22. Nematic
liquid crystals (NLC), as a structured fluid with elasticity, can accom-
modate microswimmers. A topologically required point defect accom-
panies a spherical colloid dispersed in the NLC and breaks the colloid’s
symmetry, resulting in net propulsion16,23–26. Furthermore, an aligned
NLC can guide the swimming directions of motile objects in the NLC;
flagellated bacteria favor swimming along the alignment direction15,16,25.

In this study, utilizing the symmetry breaking in a surrounding
fluid solely, we experimentally demonstrate a spherical swimmer
displaying a time-symmetric size pulsation. Body motion-assisted

Received: 11 August 2021

Accepted: 30 January 2024

Check for updates

1Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. 2Center for Soft and Living Matter, Institute for Basic
Science, Ulsan, Republic of Korea. 3Faculty ofMathematics andPhysics, University of Ljubljana, Ljubljana, Slovenia. 4Jožef Stefan Institute, Ljubljana, Slovenia.
5International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan. e-mail: jjeong@unist.ac.kr

Nature Communications |         (2024) 15:1220 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2888-996X
http://orcid.org/0000-0002-2888-996X
http://orcid.org/0000-0002-2888-996X
http://orcid.org/0000-0002-2888-996X
http://orcid.org/0000-0002-2888-996X
http://orcid.org/0000-0002-2142-8925
http://orcid.org/0000-0002-2142-8925
http://orcid.org/0000-0002-2142-8925
http://orcid.org/0000-0002-2142-8925
http://orcid.org/0000-0002-2142-8925
http://orcid.org/0000-0002-3082-783X
http://orcid.org/0000-0002-3082-783X
http://orcid.org/0000-0002-3082-783X
http://orcid.org/0000-0002-3082-783X
http://orcid.org/0000-0002-3082-783X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45597-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45597-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45597-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45597-1&domain=pdf
mailto:jjeong@unist.ac.kr


microswimmers hitherto studied shouldhave intrinsic anisotropy and
show either nonreciprocal or time-asymmetric motion to gain net
propulsion. However, our pulsating spherical bubble in NLC acquires
the centrosymmetry breaking by having a point defect, and nemato-
dynamics in the viscoelastic and anisotropic NLC renders time-
reversal symmetry breaking despite the time-symmetric pulsation.

Results and Discussion
We recruit pulsating spherical bubbles dispersed in a homogeneously
aligned nematic liquid crystal (NLC) cell as microswimmers (Fig. 1a).
Two surface-treated substrates sandwich the NLC to form the homo-
geneously aligned cell of a uniform thickness (see Methods and Sup-
plementary Fig. 1)27. The nematic director n, representing the average
direction of the rod-like LC molecules, is aligned uniaxially, defining
the far-field director n0 parallel to the substrates. Spherical bubbles of
approximately 100 μm in diameter, changing their radii under pres-
sure modulation, are dispersed in the NLC (Fig. 1b). The buoyant
bubbles float but do not touch the top substrate because of the elastic
repulsion in NLC27–30; They remain spherical if they are smaller than the
distance between the substrates.

The bubble distorts the homogeneously aligned NLC director
field to satisfy the boundary conditions. The directors are perpendi-
cular to the bubble surface29,31,32, which causes the bubble to acquire a
topological defect conserving the zero net topological charge of the
homogeneous director configuration33,34. Figures 1c and d illustrate
director configurations with a disclination ring called the Saturn-ring
(SR) and a point defect called the hyperbolic hedgehog (HH),
respectively35. Thebubbles accompanying eachdefect are labelled SRB
and HHB, respectively. The energetics regarding the bubble size and
confinement determines the director configuration and the type of
accompanying defects28,36. For instance, as displayed in Fig. 1e, we can
transform SR into HH by decreasing the bubble size (Supplementary
Fig. 2). The location of theHH (left or right side of the bubble in Fig. 1a)
is determined randomly. This point defect breaks the centrosymmetry,
meaning that the defect side of HHB differs from the defect-free side,
in contrast to the centrosymmetric SRB.

The pulsating HHB swims toward the accompanying HH, whereas
the displacement of pulsating SRB is negligible (Fig. 1c and d). We
prepare and investigate a single bubble in the whole sample cell to
exclude interference from other bubbles (see Methods for experi-
mental details and Supplementary Movie 1). As shown in Fig. 1b, κ = t

T
represents the cycle number of the pulsating bubble when t and T are
the elapsed time and period of the sinusoidal pressure modulation,
respectively. The centrosymmetric SRB practically does not move
(Fig. 1c and Supplementary Movie 2); The centre position zB of SRB
moves by approximately 1 μm during κ = 480 with no change in the
bubble average radius R. We then decrease the radius of the pulsating
SRB gradually by applying the positive DC offset pressure Poffset to the
sinusoidal pressure modulation (see Methods for experimental
details). Figure 1e in the bubble’s centre frame reveals the transfor-
mation from SRB to HHB as the SR shrinks to HH. Subsequently, the
centrosymmetry-broken HHB shown in Fig. 1d and Supplementary
Movie 3 swims toward HH along n0 by the periodic size modulation.
Specifically, the HHB of the average radius R0 = 60 μm swims at the
average speed of 0.2 μm/s under 4-Hz pulsation with the amplitude
ΔR ≈ 5 μm. We confirm that this motion is not an overall drift because
multiple HHBs in the same cell migrate toward their own HHs (Sup-
plementary Movie 4).

We find the bubble’s centre translates while oscillating with a
phase delay to the sinusoidal radius oscillation. As shown in Fig. 2a,
upon the sinusoidal pressure modulation of the frequency f, HHB’s
radius R(t) oscillates about R0 with the same frequency f and an
amplitude ΔR, following the isothermal volume change of the ideal
gas (the red solid line in Fig. 2a), which is expressed as
RðtÞ≈R0ð1 + ΔR

R0
sin 2πf tÞ with a linear approximation. This R(t) results

in themotionofHHB’s centre zB(t)with anoscillation amplitudeΔz and
a linear translation z0(t), i.e., zBðtÞ≈ z0ðtÞ+Δz sin 2πf ðt � tdÞ

� �
with

z0ðtÞ=Ut + zconst, a constant velocity U, and a constant position zconst
(Fig. 2a). As shown in the last row of Fig. 1d, we define the positive z-
direction in the bubble’s centre frame as the defect-to-bubble-centre
direction parallel to the n0. To our interest, zB(t) has a time delay td to
R(t), and Fig. 2b indicates the phase-delay Ψ = 2πftd∝ f 0.46±0.02. We can

Fig. 1 | Pulsating bubbles dispersed in NLC. a Optical microscopy images of
bubbles dressed with different types of NLC director configurations. The bubbles
are dispersed in a homogeneously alignedNLCcellwith the far-field directorn0 k ẑ
and observed with a linearly polarised illumination Pol ⊥ n0, in the transmission
mode; This optical configuration is applied to all images in Fig. 1. The scale bars are
100 μm. HHB and SRB stand for the bubble with hyperbolic-hedgehog (HH) defect
and Saturn-ring (SR) defect, respectively. The two HHBs have HHs on different
sides. b Time-lapse image sequence of the pulsating HHB with a periodic size
modulation under sinusoidal pressure modulation. κ = t

T indicates the cycle num-
ber with the elapsed time t and pulsating period T. c Stroboscopic observation of
the pulsating SRB in the laboratory frame according to the cycle number κ. In the

first row,weuse a red solid line to indicate the SRandblue dashed lines to illustrate
the NLCdirector configuration. zB, indicated by the green arrow in the second row,
is the centre of the bubble of the diameter 2R, and the red arrows point to the SR.
d Stroboscopic observation of the pulsating HHB and its translation in the
laboratory frame. The red dot in the first row indicates HH in the director config-
uration (blue dashed lines). The HHB translates toward the HH from the initial
position, manifested by the green dashed line and arrow. We define the positive z-
direction as the direction from HH to the centre of bubble. e SR-to-HH transfor-
mation in the bubble frame. The red dotted arrows at t = 0 s illustrate how the SR
collapses into the HH. The bubble gradually shrinks because we apply a positive
offset pressure in addition to the sinusoidal pressure modulation.
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exclude possible roles of inertia37 and NLC’s shear-rate dependent
viscosity22 in HHB’s propulsion. The density (≈1.0 g/cm3), viscosity
(≈10−1 Pa ⋅ s), characteristic time and length scales (T ≈ 1 s and ΔR ≈ 10
μm) and flow speed (dRdt ) give Re<10�4 and shear-rate < 1 s−1, where our
NLC shows negligible shear-rate dependent viscosity38.

The comparisonof the two time scales hints that nematodynamics
around thepulsatingHHB results in the experimentally observedphase
delay and time-reversal symmetry breaking, enabling the swimming
motion. The nematic director field at a length scale l has a diffusive
elastic response with a timescale of τ = γ1l2/K; γ1 is the nematic rota-
tional viscosity, and K is the nematic elastic constant in the one-
constant approximation39. Within the slow-pulsation regime where the
director oscillation period T by the pulsation ismuch longer than τ, the
nematic directors have enough time to globally adapt to the oscillating
environments, resulting in negligible time-reversal symmetry breaking
and no net translation according to the Scallop theorem. However, for
the fast-pulsation regime where T is comparable or shorter than τ, the
directors cannot respond quickly enough in the quasi-static way,
causing that thedirectors near thepulsatingHHBmay change in a time-
asymmetric manner with a time delay to the fast pulsation.

The elasticity-mediated director dynamics resulting from a local
director oscillation can be illustrated in the following one-dimensional

system simplifying the director fields around a pulsating bubble.
Nematodynamics formulates that the director tilt angleϕ(x, t) at time t
and distance x from a surface obeys the dynamic equation
γ1

∂ϕ
∂t =K ∂2ϕ

∂x2
39. With a periodic distortion ϕðx =0,tÞ=ϕ0 sinðωtÞ

imposed at x =0, the time-dependent solution for the tilt angle is
ϕðx,tÞ=ϕ0 e

�x=ζ sinðωt � x=ζ Þ, where ζ =
ffiffiffiffiffiffi
2K
ωγ1

q
. The elastic diffusion of

the oscillating director decays exponentially away from the surface
with a characteristic length scale ζ. Additionally, to our interest, the
phase delay term scales as

ffiffiffiffi
ω

p
, and a similar scaling is experimentally

observed in the phase delay Ψ between R(t) and zB(t) as shown in
Fig. 2b: Ψ∝ f 0.46±0.02. This phase delay breaks the time-reversal sym-
metry, making the nematic director fields around the expanding and
shrinking bubble different. We find experimentally no clear λ-depen-
dency of the phase delay under the same frequency as shown in Sup-
plementary Fig. 3. For typical material parameters, such as K ≈ 10pN
and γ1 ≈0.1 Pa ⋅ s, the characteristic length scale ζ at f = 2 Hz is
approximately 4μm~0.1R0. This indicates that the time-asymmetric
director deformation in the vicinity of the bubble, which includes the
point-defect region, should be mostly responsible for the net swim-
ming motion.

We experimentally verify the time-reversal symmetry breaking of
the director fields around the pulsating HHB. As depicted in Fig. 2c and

Fig. 2 | Measurements of the pulsation-induced propulsion of HHB. a Size and
positionof a representativepulsatingHHB. The radiusRoscillates aboutR0with the
amplitude ΔR by the sinusoidal pressure modulation of the period T. The red solid
line corresponds to a fit according to the isothermal volume change of an ideal-gas
bubble. The position zB(t) of the bubble’s centre also exhibits anoscillationwith the
amplitude Δz and the same frequency f = T−1, but with a linear translation shown as
z0 and a timedelay td toR(t). Theblue solid line is the bestfitwith theoscillation and
linear translation. b Scaling relation between a phase delay Ψ = 2πftd and f. Each

data point is the average value from a 2-min-long recorded movie at 60 frames
per second, and the error bars represent its standarddeviation. Thefit line indicates
Ψ∝ f0.46±0.02. c Polarised optical microscopy observations of HHB during a single
pulsation cycle. With the incident polarisation Pol parallel to the far-field director
n0, we observe the transmitted light intensity around the pulsating HHB according
to the cycle number κ with a discrete colour mapping of 8-bit intensity. The scale
bar is 50 μm.

Fig. 3 | An oscillating dumbbell model for the pulsating HHB and its compar-
ison with experimental data. a A schematic diagram of a pulsating HHB as an
oscillating dumbbell. The pulsating HHB of the time-varying radius R(t) with its
centre at zB(t) accompanies a point defect at zdef(t). The connecting spring of a
spring constant k represents an effective quadratic potential between the defect
and the bubble. Dashed lines sketch the deformed nematic director field with the
perpendicular anchoring at the bubble surface.b and cScaling relationbetween the
dimensionless oscillation amplitude Δz

R0
, dimensionless swimming speed jhUij

f R0 sinΨ, and

deformation ratio λ, where Ψ = 2πftd is the phase delay. The fit lines in b and
c denote that the oscillation amplitude is proportional to λ1.3±0.1, and the dimen-
sionless speed is proportional to λ1.7±0.1. The data in Fig. 2b, Figs. 3b and c are from
the same dataset of observed pulsating HHBs confined in a 155 μm-thick cell. Each
data point is the average value from a 2-min-long recorded movie at 60 frames
per second, and the error bars represent its standard deviation; The large errors in
c partly result from the error propagation of sinΨ in the denominator.
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Supplementary Movie 5, we observe the NLC around a pulsating HHB
using polarised optical microscopy and measure the transmitted inten-
sity profile. Because the transmitted intensity of polarised light through
the birefringent NLC reflects the director configuration along the beam
path40, the time-asymmetric intensity profile reveals that the director
configurations near the HHB during the expansion and shrinkage differ.
For instance, as shown in Fig. 2c, the HHB has the same size, i.e., R(κ=
0.2) =R(κ=0.8), but the transmitted intensity profiles near the bubble
do not overlap; See the area and location of the green equi-intensity
region indicated by green arrows. Namely, the sinusoidal pulsation is
reciprocal and time-symmetric, but the NLC environment is not.

Here we present an analytical model to explain the pulsating
HHB’s motion considering the nematodynamics around the bubble
accompanying the point defect. As the first approximation, our model
considers the HHB in an infinite bulk system with no wall and buoy-
ancy. Then, we characterize the system with a dimensionless Ericksen
number Er = ωγ1R

2
0

K that compares a time period of radius oscillation
with the nematic director relaxation timeat the length scaleofR0. For a
slow pulsation, i.e., Er≪ 1, the energetics of the nematic director field
and the viscous drag on the point defect govern the bubble displace-
ment dynamics (see Methods for the calculation of viscous loss in a
pulsating flow). The director field around a spherical bubble with the
point defect canbe characterizedby a distancebetween thedefect and
the bubble surface, and the equilibrium distance is determined by a
quadratic potential41. When the defect deviates from its equilibrium
position, a pair of elastic forces aims to restore the equilibrium con-
figuration and displaces the defect and the bubble. The Ericksen stress
tensor σEr

ij = � δf
δ∂jnk

∂ink + fδij with the free energy density f of the
nematic director field n formally mediates the forces. However,
instead of working directly with the stress tensor, we adopt a coarse-
grained approach where the energetics and drag of defect structures
determines their dynamics. This is a common approach formulating
analytical descriptions of nematodynamics42.

As shown in Fig. 3a, an effective dumbbell-like model for the
defect and the bubble connected by a spring describes a quadratic
potential F = k

2 ðd � ϵRÞ2, where d is a bubble surface-to-defect dis-
tance with the constant ϵ = 0.17 and k = 16:5πK=RðtÞ= k0

R0
RðtÞ is the

effective spring constant41. Employing the sinusoidal pulsation
RðtÞ=R0 +ΔR sinωt =R0ð1 + λ sinωtÞ with the pulsation ratio λ =ΔR/R,
we find that the spring constant k and the equilibrium length ϵR have a
first order correction in λ. The spring transmits a force F

!
that drives

the overdamped motion of the point defect and the bubble. The drag
coefficient of the point defect cdef =π2γ1 is derived in Eq. (13) (see
Methods for the calculation of viscous loss in a pulsating flow), where
γ1 is the rotational viscosity, and the drag coefficient of the gaseous
bubble equals cB ≈ 4πη for an average isotropic viscosity η43.

We first consider the slow propulsion regime of Er≪ 1. The oscil-
lation of the bubble radius generates a propulsion force on the bubble
(see Methods for derivations)

Fslow =
ωΔRR0cBð1 + ϵÞ

1 + cB
cdef

cosωt: ð1Þ

The force is proportional to _RðtÞ with the proportionality constant
depending on the parameters of the dumbbell-like model. The
propulsion force induces a periodic oscillation of the bubble
position zB

zBðtÞ= z0 +
ΔRð1 + ϵÞ
1 + cB

cdef

sinωt: ð2Þ

The bubble position zB(t) in Eq. (2) exhibits no net displacement but a
periodic motion in phase with the bubble radius RðtÞ=R0 +ΔR sinωt.
This is consistent with the Scallop theorem44, since the pulsation with
the repeating expansion and shrinkage is reciprocal.

Now, extending the slow-pulsation model into the fast-pulsation
one, we present a minimal model explaining the bubble’s net propul-
sion. As discussed above for the one-dimensional director dynamics
model with an oscillating-director boundary condition at finite Erick-
sen numbers, the nematic response to periodic modulation is not
instantaneous. Thus, to construct a minimal model of bubble propul-
sion in this fast-pulsation regime, we employ a phase delay ψ with
respect to _RðtÞ in the periodic sinusoidal propulsion force:

F fast =aωλR
2
0 cos ωt � ψð Þ, ð3Þ

where a is the proportionality coefficient that can depend on the
system size andmaterial parameters. At the lowRe regime showing the
overdamped motion, the propulsion force is counteracted by the
Stokes drag on the bubble

Fdrag = cBRðtÞ _zBðtÞ= cBR0 1 + λR sinωtð Þ _zBðtÞ: ð4Þ

Note that, in the view of building a minimal model, we adopt only the
sinusoidal propulsion force in Eq. (3) and the sinusoidal drag coeffi-
cient in Eq. (4), although higher Fourier modes are possible. As shown
in the bottom panel of Fig. 2a, deviations from sinusoidal oscillations
are negligible in the experiments, which supports our approximation.

Equating Ffast = Fdrag gives the bubble velocity _zBðtÞ with both the
oscillation and the translation, which supports our experimental
observation. When expanded for λ≪ 1,

_zBðtÞ=
aωR0

cB
λ cosðωt � ψÞ � λ2 cosðωt � ψÞ sinðωtÞ
h i

+Oðλ3Þ: ð5Þ

We integrate the velocity over time to obtain the bubble position

zBðtÞ= zconst +
aωR0

cB

λ
ω
sinðωt � ψÞ+ λ2

4ω
cosð2ωt � ψÞ � λ2

2
t sinψ

" #

+Oðλ3Þ:
ð6Þ

The oscillation amplitude Δz of zBðtÞ= z0ðtÞ+Δz sinðωt � ψÞ corre-
sponds to λ aR0

cB
which scales linearly with λ and supports the experi-

mentally observed scaling in Fig. 3b, showing the oscillation ratio
Δz
R0

/ λ1:3±0:1. Note that the additional oscillation contribution with a
doubled frequency 2ω should have a minor effect on the bubble
position compared to the ω oscillation term, because of the prefactor
of λ2/4 with the experimental λ <0.18. Importantly, the phase delay ψ
results in the net translation term,� λ2

2 t sinψ, giving the time-averaged
swimming speed hUi= � λ2R0ω sinψ a

2cB
. This result is in line with the

experimentally observed scaling of the swimming speed shown in
Fig. 3c, where the dimensionless translation swimming speed jhUij

f R0 sinΨ is
proportional to λ1.7±0.1. The proportional relation between net displace-
ment (∣〈U〉∣T) and oscillation amplitude (Δz) shown in Supplementary
Fig. 4 also support our model shown as Eq. (6). However, our
experimental setup limits the ranges of R0, λ, and f; see Methods for
the details. Additionally, the data points in Fig. 3b and c have only the
limited range ofR0, from27.1 to 37.6μm, becausewewant to exclude a
confinement effect that will be discussed in the following paragraph.
Thus, Fig. 3b and c do not validate the ∣〈U〉∣∝R0 experimentally.

The origin of the phase delay ψ in Eq. (3), resulting in the net
translation of the bubble, deserves further discussion. The one-
dimensional director dynamics model explained above shows that the
director oscillation decays out exponentially from the boundary. This
indicates that the phase-delayed director deformation only in the
vicinity of the bubble, including the point defect—matters. Moreover,
the force due to a moving point defect is dominant, as shown in
Methods. Therefore, in the coarse-grained dumbbell model, we
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consider the force by the point defect exhibiting the delayed motion
with afiniteψ, but donot assumeany specificdependence of the phase
delay on the model parameters. In Fig. 2(b), experimental data shows
that the phase delayΦbetweenR(t) and zB(t) scales as f 0.46±0.02, which is
in line with ψ in the one-dimensional model of director oscillation that
is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f γ1=K

p
. The dependence of the phase delay on the

othermaterial parameters canbe tested in futureworks usingdifferent
LC materials.

We also discover that an optimal confinement exists for pulsating
HHB’s propulsion, and the HHB can reach a maximum speed of
approximately 1 μm/s, which is about one order of magnitude faster
than the slowest observed bubble. The swimming speed of the bubble
in Fig. 1d and Supplementary Movie 3 is relatively slow compared to
other microswimmers5, only achieving 0.2 μm/s and meaning
jhUijT
2R0

∼0:003. However, regardless of the cell thickness H, the dimen-
sionless swimming speed jhUij

f Hλ2
increases considerably as the bubble

diameter 2R0 approaches the cell thicknessH, achieving themaximum
value near 2R0

H ≈1:1, as shown in Fig. 4a. Because the spherical HHB
should be squeezed when the diameter reaches 2R0

H ≈1, the bubble’s
shape in this range keeps transforming between the sphere anddisk by
pulsation. We presume that this shape change enhances the time
asymmetry of the pulsation process; The bubble feels a different
environment during the expansion and shrinkage, respectively. Sup-
plementary Fig. 5 and Movies 6 and 7 show that flow fields around the
bubble indeed change when the spherical bubble becomes the disk.
The detailed mechanism of the speed enhancement deserves further
investigation.

Lastly, we report that the pulsating SRB also can swim when the
bent SR breaks the symmetry35, as shown in Fig. 4b and Supplementary
Movie 8. SRB can retain its bent SR, i.e., not at the equator, possibly
because of the cell boundary condition (Supplementary Fig. 2).
Figure 4c shows how the bent angle θSR and centre position zB change
upon the pulsation cycle. In contrast to the symmetric SRB with its SR
at the equator (Fig. 1c), asymmetric SRB realises swimming through
pulsation, and the translational and oscillatory motions are similar to
those of the HHB (Fig. 4c). We find no strong correlation between the
translational speed and θSR. The θSR changes spontaneously during the
pulsation cycles. This observation demonstrates that centrosymmetry
breaking in any form can lead to net propulsion when combined with
the time-reversal-symmetry-breaking NLC relaxation.

Themain quest for propulsion in a lowRe environment is to break
the symmetries. This work demonstrates that even a symmetric object

exhibiting time-symmetric motion can swim by symmetry breaking
solely in a structured fluid. Our findings could help us better under-
stand and design microswimmers, from bacteria to artificial sperm, to
navigate complex environments. Specifically, a relaxation in complex
fluids, responsible for time-reversal symmetry breaking in our case,
could be exploited to increase swimming efficiency. Moreover, the
observed existence of optimal confinement for propulsion may shed
light on the unexpected roles of confinement, e.g., speed enhance-
ment. Lastly, beyond the single-swimmer behaviour studied here,
collective swimming resulting from the interaction and symmetry-
breaking in complex fluids would be an intriguing question to pursue.

Methods
Materials, sample preparation, and optical microscopy
We conduct all experiments using 4-cyano-4’-pentylbiphenyl (5CB,
Sigma-Aldrich) as the anisotropic viscoelastic medium at the room
temperature 22 ± 2 °C, at which 5CB has the nematic phase. This 5CB is
practically incompressible because its volume change ratio is only 10−6

when the pressure increase by 0.5 MPa from the ambient pressure45.
A sample cell with a single bubble can be prepared in three steps.

First, we prepare an empty sandwich cell with two parallel polyimide-
coated glass substrates27. They are rubbed along the same direction
and assembled face-to-face to impose a uniaxial planar alignment of
5CB at the surface, as displayed in Supplementary Fig. 1a; the NLC
directors align along the rubbing direction. The cell gap between two
substrates is controlledbyfilm spacers of thickness 50, 80, and 155μm,
and the cell area approximately 1 cm× 1 cm.Only two opposite sides of
the square cell are sealed with spacers and adhesive to facilitate
pressure propagation to the dispersed bubbles through the openings.

In the second step, we fill the sandwich cell with the bubble-
dispersed 5CB. Air bubbles are dispersed into 5CB in a vial by bubbling
5CB with a syringe needle, and the bubble volume fraction is con-
trolled by varying the injection volume and speed. Subsequently, we
fill the bubble-injected 5CB into the sandwich cell along the rubbing
direction through the unsealed sides. Multiple bubbles exist immedi-
ately after filling the cell (Fig. 1a). The bubbles float to the top substrate
because of buoyancy but make no physical contact with it because of
elastic repulsion in the NLC27–29,31,32.

Finally, we place the homogeneously aligned NLC cell with mul-
tiple bubbles in a custom pressure chamber, as shown in Supple-
mentary Fig. 1a. The pressure chamber with the window allows the
optical observation of the bubbles and is connected to a pressure

Fig. 4 | Effects of confinement and bent SRB on the bubble propulsion. a Cell
thickness-dependent propulsion speed. The data shows the dimensionless swim-
ming speed jhUij

f Hλ2
according to cell thicknessH and different size ratios 2R0

H . While the
data at H = 155μm are acquired from multiple bubbles of various sizes, the other
data at each H are from a representative bubble of which the central radius R0
decreases over time during pulsation. We split the data into equally spaced dura-
tions of nearly constant R0. Each data point represents the average value of each
duration, with the error bands denoting the standard deviation. Optimal

propulsion is achievedat 2R0
H ≈1:1, regardless ofH.b Stroboscopic observationof the

pulsating SRB with a bent SR according to the cycle number κ. The SR pointed by
the red arrows does not lie at the equator of the SRB. The angle θSR is the angle
between the bent SR and the moving direction (z-axis). The scale bar is 100 μm.
c Representative data of a SRB’s centre position zB and θSR as functions of κ.
d Representative data of the radius R(t) (black solid) and the centre position zB(t)
(red dashed) of the pulsating SRB according to the time t.
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controller (OB1 MK3, Elveflow) that controls the chamber pressure in
the range of ∣ΔP∣ <0.5MPa from the ambient pressure P0. We decrease
the radii of the dispersed bubbles by applying the positive DC offset
pressure Poffset in the pressure chamber, as shown in Supplementary
Movie 1.Monitoring this shrinking process, we eliminate all but a single
bubble in the whole cell to investigate the dynamics of a single bubble
without interference from the other bubbles. The radius of a single
bubble can be controlled by applying pressure. For example, we
increase the radius of the small HHB in Fig. 1d after the SR-to-HH
transformation to produce a large HHB (Fig. 1e) by applying negative
Poffset.

We use transmission light microscopy with polarised illumination
to observe the bubble, as shown in Supplementary Fig. 1b. An inverted
microscope (IX73, Olympus) with a 4 × and 10 × objective lenses and a
CCD camera (STC-MC202USB, Omron Sentech) captures the motion
of the bubble at a maximum acquisition rate of 60 frames per second.
The polarised illumination is derived from the linear polariser Pol
placed in front of the halogen lamp.When thePol of the illumination is
perpendicular to the far-field director n0 (Pol ⊥ n0), the boundary of
the bubble can be clearly identified, as shown in Figs. 1 and 4b. When
Pol ∥ n0, as shown in Fig. 2c, the transmitted light intensity reflects the
non-uniform director field40, which allows us to observe qualitatively
how the director configuration responds to the pulsation of the
bubble.

Size modulation of the spherical bubble and its measurement
Wemodulate the size of the bubble by controlling the pressure in the
chamber. The bubble remains spherical because of the dominant
surface energy with the surface tension σ ~ 10−2 N/m30. For instance,
when a bubble of radius R = 50 μm pulsates under the pressure
modulation of infrasound frequency (f < 20 Hz), the surface energy
(σR2 ~ 2.5 × 10−10 J) surpasses both the elastic energy (KR ~ 5 × 10−16 J) and
viscous energy (γfR3 ~ 2.5 × 10−13 J) with the average elastic constant
(K ~ 10−11 N)46 and viscosity (γ ~ 10−1 Pa ⋅ s)40 of 5CB.

The bubble size oscillates almost sinusoidally upon sinusoidal
pressure modulation. The infrasound frequency (f < 20 Hz) of a
wavelength considerably longer than the sample cell size results in
uniform pressure across the entire cell. This simplifies the Rayleigh-
Plesset equation, describing the dynamics of a spherical bubble in an
incompressible fluid into the Young-Laplace equation
Pbubble = Pout +

2σ
R . Since the large bubble size (R ~ 50μm) makes the

Laplace pressure 2σ
R sufficiently smaller than the applied pressure Pout

with the surface tension σ ~ 10−2 N/m30, Pbubble ≈ Pout. The pressure
Pout(t) is P0 +Poffset � ΔP sin 2πf t consisting of the ambient pressure
P0, DC offset pressure Poffset, and sinusoidally modulating pressure
with the amplitude ΔP and frequency f. Applying the isothermal
volume change of the ideal gas under Pout(t), we determine that the

radiusR(t) follows RðtÞ=R0
Poutð0Þ
PoutðtÞ

� �1=3
, as displayed by the red solid line

in Fig. 2a. The R(t) can be linearly approximated to

RðtÞ≈R0 1 + 1
3
ΔP sin2πf t
P0 +Poffset

� �
when j ΔP

P0 +Poffset
j≪1, and becomes

RðtÞ≈R0ð1 + λ sin 2πf tÞ with the deformation ratio λ= ΔR
R0

and pulsating

amplitude ΔR. We experimentally confirm the proportional relation-
ship between λ and ΔP, as shown in Supplementary Fig. 3.

We find the envelopes of the oscillating data under sinusoidal
pressure modulation, i.e., the bubble’s radius R(t) and the centre
position zB(t), to estimate their oscillation centre and amplitude. As
shown in Supplementary Fig. 6, we apply the Envelope method pro-
vided by OriginPro 2020 (OriginLab) to determine the enveloping
curves connecting the extrema of the oscillating data, e.g., RmaxðtÞ and
RMinðtÞ. Then, we acquire the oscillation centre R0 =

RmaxðtÞ+RMinðtÞ
2 and

amplitudeΔR= RmaxðtÞ�RMinðtÞ
2 as functions of time.R0 andΔRmaychange

even under the constant pressure modulation amplitude ΔP with
Poffset = 0 because 5CB has finite gas solubility32. However, the defor-
mation ratio λ= RmaxðtÞ�RMinðtÞ

RmaxðtÞ+RMinðtÞ remains constant, and we experimentally
confirm it. We apply the same method to retrieve z0(t) and Δz(t)
from zB(t).

Our experiment studies the scaling behavior within the limited
range, as shown in Figs. 2 and 3, because of unavoidable experimental
limitations and the system’s nature. First, optical resolution and the
pressure range limit the pulsation ratio λ. Very small λ results in opti-
cally unresolvable oscillation amplitude and net displacement of the
bubble; The typical net displacement observed after one pulsation
cycle with no confinement effect is already sub-micron. On the other
hand, becauseof the inverse relationshipbetween thepressure and the
volume = length3, approximately ten times higher amplitude of pres-
suremodulation than the current value is required to increase λ range
by the factor of two; We use the maximum pressure range covered by
our pressure pump, i.e., ± 1 bar.

In a similar vein, the ranges of frequency and bubble size are
limited. It is challenging to observe small bubbles because the small
ones dissolve quickly into the LC. The large spherical bubbles demand
a homogeneously aligned thick LC cell of mm thickness, which is
practically impossible to prepare because of the very long relaxation
time. Moreover, as shown in Fig. 4, the propulsion is sensitive to the
confinement, i.e., 2R0/H; thus, in Fig. 3, we investigate the bubbles of
similar radii to exclude the confinement effect in understanding the
swimming mechanism. In the case of frequency, the pressure pump’s
response time of ~ 100 ms sets the maximum frequency ~ 10 Hz. In
other words, when the pulsation frequency exceeds 10 Hz, the pumps
cannot follow the set frequency and fail to generate the sinusoidal
pressure modulation; λ decreases at a higher frequency, as shown in
Supplementary Fig. 3.

Viscous loss in pulsating flow
We estimate the magnitude of two propulsion mechanisms of pulsat-
ing bubbles: (i) anisotropic viscosity of a dipolar director field struc-
ture and (ii) drag force of a moving point defect in the director field.
Pulsating bubble generates a radial flow that is subject to the aniso-
tropic viscosity of the surrounding nematic liquid crystal, described by
the nematic viscous stress tensor42

σviscous
ij =α1ninjnknlAkl +α2njNi +α3niNj +α4Aij

+α5njnkAik +α6ninkAjk ,
ð7Þ

where αi are Leslie viscosity coefficients, Aij = ð∂ivj + ∂jviÞ=2 is the
symmetric shear tensor, and Ni = _ni � ðð∇× v!Þ× n!Þi=2 is the corrota-
tional timederivative of thedirector. Dipolardirector structure around
the bubble breaks the symmetry and allows for a net force due to the
bubble radial expansion. To estimate the propulsion force at Er≪ 1, we
take a stationary dipolar director field ansatz41

n!ð r!Þ= R2
0

r3
x,

R2
0

r3
y,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R4

0

r6
ðx2 + y2Þ

s0
@

1
A ð8Þ

and a radial flow

v!ð r!,tÞ= ωΔRR2
0

r2
cosðωtÞ ^e!r : ð9Þ

Force density is computed from the divergence of the stress tensor
f i =∂jσ

viscous
ij for the viscosity parameters of 5CB, α1 = −0.011 Pa ⋅ s,

α5 = 0.102 Pa ⋅ s, α6 = −0.027 Pa ⋅ s42. Other viscosity components do
not contribute to a net force in a stationary director field and a radial
flow. Due to the director field symmetry, the net force has a
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component only in the z direction and equals

Fshear
z =

Z
r > R0

dV ∂jσ
viscous
zj ≈0:48πR0ωΔRα5 cosðωtÞ: ð10Þ

We now estimate the viscous force due to reorientation of the
director field by considering a point defect moving with a constant
velocity vdef in analogy to the two-dimensional case42. The director
field of a moving hyperbolic defect at small velocities (Er≪ 1) has the
shape of

n!ð r!,tÞ= x,y,vdef t � z
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + ðvdeft � zÞ2

q
: ð11Þ

Drag force on a moving point defect is estimated from the energy
dissipation rate

Σ= γ1

Z
dV

_
n!

2
= γ1v

2
defπ

2Rmax, ð12Þ

where the integration is performed over a spherical region with radius
Rmax. Taking the defect velocity to be equal to the speed of the bubble
surface andestimating the sizeof thepoint defect regionwithRmax≈RðtÞ,
the force can be directly estimated from the dissipation rate42

Fdrag
z =Σ=v = cdefRðtÞvdef =π2RðtÞωΔRγ1 cosðωtÞ: ð13Þ

Comparing Eq. (10) to Eq. (13), we observe that both mechanisms
can produce a force in the direction from the defect towards the col-
loid. The force due to displacement of the point defect is stronger in
magnitude, and we use it in the derivation of the swimming dynamics.

Slow pulsation dynamics
Here we calculate the dynamics of the spherical bubble and the
topological point defect in the slow pulsation regime at Er≪ 1. In the
main text, we introduce an effective dumbbell-like description of the
bubble and the defect due to a quadratic potential F = k

2 ðd � ϵRÞ2
between them, where d is a bubble surface-to-defect distance with the
constant ϵ =0.17 and k is the effective spring constant41. For slow
pulsation, the bubble surface-to-defect distance d = zB(t) − R(t) − zdef(t)
equals the equilibrium distance ϵR(t), which is proportional to the
bubble radius.Here, zB and zdef are thebubble and thedefect positions,
respectively. From the sinusoidal oscillation of the bubble radius
RðtÞ=R0 +ΔR sinðωtÞ, it follows that

zBðtÞ � zdef ðtÞ=R0ðϵ + 1Þð1 + λ sinωtÞ, ð14Þ

where λ =ΔR/R. The spring transmits a force F
!

that drives the over-
damped motion of the point defect and the bubble:

F = � cdefRðtÞ _zdefðtÞ= cBRðtÞ _zBðtÞ, ð15Þ

where cdef and cB are the drag coefficients for the defect and the
bubble, respectively. Combining Eq. (15) and the time derivative of Eq.
(14), we can express the propulsion force and the bubble position in
the slow pulsation regime as Eqs. (1) and (2), respectively.

Data availability
The data that support the findings of this study are available within the
main text and the Supplementary Information. However, further
information can be available from the corresponding author upon
request.
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