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Optimal distributed quantum sensing using Gaussian states
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We find and investigate the optimal scheme of distributed quantum sensing using Gaussian states for
estimation of the average of independent phase shifts. We show that the ultimate sensitivity is achievable by
using an entangled symmetric Gaussian state, which can be generated using a single-mode squeezed vacuum
state, a beam-splitter network, and homodyne detection on each output mode in the absence of photon loss.
Interestingly, the maximal entanglement of a symmetric Gaussian state is not optimal although the presence
of entanglement is advantageous as compared to the case using a product symmetric Gaussian state. It is also
demonstrated that when loss occurs, homodyne detection and other types of Gaussian measurements compete
for better sensitivity, depending on the amount of loss and properties of a probe state. None of them provide
the ultimate sensitivity, indicating that non-Gaussian measurements are required for optimality in lossy cases.
Our general results obtained through a full-analytical investigation will offer important perspectives to the future
theoretical and experimental study for distributed Gaussian quantum sensing.
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I. INTRODUCTION

Quantum resources are known to be useful for further
enhancing the precision and the sensitivity of estimation of
various physical quantities beyond the standard quantum limit
[1–5]. A number of studies on single-parameter estimation
have been performed over the past few decades [6], but much
attention has begun to be paid to estimation of multipa-
rameters in recent years [7]. Quantum-enhanced sensitivity
in simultaneous estimation of multiple phases has been in-
vestigated to explain the role of quantum entanglement and
identify optimal and realistic setups saturating the ultimate
theoretical sensitivity [8–12]. The advantage of exploiting
quantum entanglement becomes more significant when sens-
ing takes place in different locations and the parameter of
interest is a global feature of the network, e.g., the average
of distributed independent phases [13–18]. Such distributed
sensing is related to applications such as global clock syn-
chronization [19] and phase imaging [8]. These inspire the
use of more practical quantum resources that are feasible
in a well-controlled manner with current technology, e.g.,
Gaussian systems [20]. Very recently, the sensitivities of
distributed quantum sensing with Gaussian states were studied
under specific conditions [16,17]. The ultimate sensitivity and
feasible optimal schemes, however, are not yet found and
studied in the class of Gaussian metrology [21–23].

In this paper, we investigate the ultimate sensitivity for
the average phase estimation in distributed quantum sensing
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with Gaussian states, where the phases are encoded onto
a multimode Gaussian probe state, as described in Fig. 1.
We find an optimal probe state and measurement setup that
achieve the ultimate sensitivity, which are shown to be exper-
imentally feasible with current technology. Interestingly, we
demonstrate that the optimal symmetric Gaussian probe state
is not a maximally entangled state. For practical relevance, we
further analyze the effect of loss, the entanglement-enhanced
gain, and other Gaussian measurements in various conditions.

We begin with a brief introduction to the formalism
describing Gaussian states and multiparameter estimation.
Gaussian states are defined as states whose Wigner functions
are Gaussian distributions and thus characterized by the first
moment vector di = Tr[ρ̂Q̂i] and the covariance matrix �i j =
Tr[ρ̂{Q̂i − di, Q̂ j − d j}/2], where {Â, B̂} ≡ ÂB̂ + B̂Â. Here,
a quadrature operator vector of a M-mode continuous vari-
able quantum system is defined as Q̂ = (x̂1, p̂1, ..., x̂M , p̂M )T,
satisfying the canonical commutation relation, [Q̂ j, Q̂k] =
i(�2M ) jk , where �2M = ( 0 1

−1 0) ⊗ 1M and 1M is the M × M
identity matrix.

II. DISTRIBUTED SENSING

Consider estimation of M-parameter φ = (φ1, φ2, ..., φM )T

based on measurement outcomes x, obtained with a condi-
tional probability p(x|φ). The multiparameter Cramér-Rao
inequality states that the M × M estimation error matrix
�i j = 〈(φ̂i − φi )(φ̂ j − φ j )〉 of any unbiased estimator φ̂i is
bounded by the Fisher information matrix (FIM), F(φ),
i.e., � � F−1, where F i j (φ) = ∑

x
1

p(x|φ)
∂ p(x|φ)

∂φi

∂ p(x|φ)
∂φ j

[24].

The conditional probability p(x|φ) = Tr[ρ̂φ�̂x] is given by a
positive operator-valued measure �̂x for a given parameter-
encoded state ρ̂φ. The quantum Cramér-Rao inequality sets a
lower bound for the error of an unbiased estimator, i.e., � �
F−1 � H−1, where Hi j = Tr[ρ̂φ{L̂i, L̂ j}]/2 is the quantum
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FIG. 1. Schematic of distributed sensing under investigation. A
multimode probe state ρ̂probe generated from the first beam splitter
network (BSN) for a given product state input ⊗M

i=1ρ̂i undergoes
the individual phase shifts on each mode. The parameter-imprinted
state ρ̂φ is fed into the second BSN, followed by measurement. The
measurement outcomes are used in post-processing to estimate the
parameter φ∗ = ∑M

i=1 wiφi with the weight vector w.

Fisher information matrix (QFIM), with L̂i being a symmetric
logarithmic derivative operator associated with ith parameter
φi [25]. When a linear combination of φi’s, φ∗ = wTφ =∑M

i=1 wiφi with the weight vector w, is of particular interest,
the estimation error is bounded as [26]

�2φ∗ ≡ 〈(φ̂∗ − φ∗)2〉 � wTF−1w � wTH−1w. (1)

Here, F−1 and H−1 are understood as the inverse on their
support if the matrices are singular. Throughout this paper,
we assume the normalization

∑M
i=1 |wi| = 1 for simplicity.

III. GAUSSIAN DISTRIBUTED SENSOR

A. Quantum Fisher information matrix

Consider a distributed phase sensor in which a product
Gaussian input state ⊗M

i=1ρ̂i is injected into a beam splitter
network (BSN), preparing a probe state ρ̂probe, the multiphase
information is encoded onto ρ̂probe by a unitary operation
Ûφ = exp(−i

∑M
j=1 φ j â

†
j â j ), and the output state ρ̂φ is mea-

sured after the second BSN, as depicted in Fig. 1. Note that
configuration of the first BSN enables one to generate any
probe Gaussian states [22,27]. We also implicitly assume a
strong reference beam to define the phases, accessible in each
mode for measurement [28]. Here, we aim to investigate the
sensitivity of Gaussian states for estimation of the parameter
φ∗. When the probe state ρ̂probe after the first BSN is a pure
Gaussian state characterized by (�, d ), the elements of the
QFIM are written as [29–34]

Hi j = 2Tr
[
�

(i, j)
probe�

( j,i)
probe

] − δi j + (
�2d (i)

probe

)T[
�−1

probe

](i, j)

× (
�2d ( j)

probe

)
, (2)

where A(i, j) denotes the 2 × 2 submatrix in the ith row and
jth column of the M × M block matrix A, and similar for the
vector d (i). The derivation of the QFIM of Eq. (2) is provided
in Appendix A. The convexity of QFIM makes it sufficient
to consider only pure probe states to find an optimal state
maximizing the QFIM [14], but one can find the analytical
form of the QFIM for general Gaussian states [29–34]. The
quantum Cramér-Rao bound in Eq. (1) can be saturated since
the generators of parameters commute [12].

FIG. 2. Estimation errors when probing the phases with prod-
uct states. The top curve represents the standard quantum limit,
�2φ∗

SQL, whereas the other curves show the error �2φ∗
OPGS when

M = 1, 3, 100. The error �2φ∗
OPGS increases with M for a fixed N̄ ,

but is always below the error �2φ∗
SQL, which approaches 1/8N̄ as

M → ∞.

B. Optimal product Gaussian state

Let us first consider the case where the probe state is
a product state and thus the QFIM is evidently a diagonal
block matrix. Without loss of generality, we assume that the
block matrix of the covariance matrix for ith mode is �(i,i) =
diag(e2ri , e−2ri )/2, simplifying the estimation error of φ∗ to be
�2φ∗ � ∑M

i=1 w2
i (cosh 4ri − 1 + 2d2

2ie
−2ri + 2d2

2i−1e2ri )−1.
When probing with a product coherent state, the error

bound becomes
∑M

i=1 w2
i /2(d2

2i + d2
2i−1), and the best strategy

for a given total average photon number N̄ is to distribute the
energy N̄ over the modes according to the weight |wi|, i.e.,
N̄i = (d2

2i + d2
2i−1)/2 = N̄ |wi|. The estimation error is thus

�2φ∗ �
M∑

i=1

w2
i

4N̄i
= 1

4N̄
≡ �2φ∗

SQL,

where the lower bound defines the standard quantum limit.
When wi = 1/M, i.e., φ∗ is the average phase, �2φ∗

SQL =
1/4Mn̄, where n̄ ≡ N̄/M represents an equal average number
of photons hitting each phase shifter.

Among all product Gaussian states, the best strategy under
the energy constraint N̄ is to prepare the probe state in
a product squeezed vacuum state with 8N̄2

i (N̄i + 1)/(2N̄i +
1) ∝ w2

i . Thus, particularly when wi = 1/M, in which φ∗ is
the average phase, the estimation error becomes

�2φ∗ � M

8N̄ (N̄ + M )
= 1

8Mn̄(n̄ + 1)
≡ �2φ∗

OPGS, (3)

where we have set ri = r for all i and N̄ = M sinh2 r. Note
that the Heisenberg scaling with n̄ or N̄ is achieved. We refer
to the above product squeezed vacuum state as the optimal
product Gaussian state (OPGS) throughout this paper. The
error �2φ∗

OPGS grows with the number of modes M, over
which the probe state is distributed for a given N̄ , as shown
in Fig. 2. When an equal energy can be used in all the modes,
i.e., for a fixed n̄, the error �2φ∗

OPGS decreases with M, which
is obvious since the total energy being used increases by
M times. It can be easily shown that the estimation error
�2φ∗

OPGS can be achieved by performing homodyne detection
on each mode without the second BSN [35].
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C. Optimal entangled Gaussian state

We now turn to the case when the first BSN is configured
to create mode correlation for an injected product input state.
In order to find the ultimate sensitivity in distributed sensing
using Gaussian states and an optimal probe state, one can
further develop the inequality of Eq. (1) as

�2φ∗ � wTH−1w � |w|4
wTHw

= |w|4
4(�2Ĝ∗)ψ

� |w|4
4 maxψ (�2Ĝ∗)ψ

,

where Ĝ∗ = ∑M
i=1 wiâ

†
i âi is the generator of φ∗ [13]. From

now on, let us focus on the estimation of the average phase,
i.e., wi = 1/M. Using a series of inequalities, we show that
the error for the average phase estimation is given by (see
Appendix B for the detail)

�2φ∗ � 1

8N̄ (N̄ + 1)
= 1

8Mn̄(Mn̄ + 1)
≡ �2φ∗

OEGS,

We note that the ultimate error �2φ∗
OEGS scales with N̄−2

or n̄−2, and is smaller than the error �2φ∗
OPGS. A similar

scaling has been discussed in Ref. [14] but with different
quantification of the resource.

We show that the ultimate error �2φ∗
OEGS can be achieved

by using symmetric Gaussian probe states with zero displace-
ment. The covariance matrix of pure symmetric Gaussian
probe states can be written as a M × M partitioned matrix
�probe with submatrices �

(i,i)
probe = diag(γ1, γ2) for all i and

�
(i, j)
probe = diag(ε1, ε2) for all i 
= j [30,36–38]. Since the states

are assumed to be pure, the components obey the relations
(γ1 − ε1)(γ2 − ε2) = 1/4 and [γ1 + (M − 1)ε1][γ2 + (M −
1)ε2] = 1/4 [36–38]. The QFIM for symmetric Gaussian
states is evidently a symmetric matrix with Hii = H11 for all
i and Hi j = H12 for all i 
= j. Finally, using Eqs. (1) and (2),
the estimation error is reduced to

�2φ∗ � 1

M[H11 + (M − 1)H12]
, (4)

where H11 = 2(γ 2
1 + γ 2

2 ) − 1 and H12 = 2(ε2
1 + ε2

2 ) (see Ap-
pendix C for details). It is clear that the correlation quan-
tified by ε1 and ε2, H12, plays an important role, but the
sensitivity is eventually determined by an interplay with the
term H11 that is not independent of H12 for a given energy.
After minimizing the lower bound in Eq. (4) under the
energy constraint N̄ = M(γ1 + γ2 − 1)/2 (see Appendix D
for the detail), we recover the ultimate error �2φ∗

OEGS when

γ1,2 = 1/2 + ε1,2 and ε1,2 = [N̄ ±
√

N̄ (N̄ + 1)]/M, leading
to H11 = 4N̄ (2N̄ + M + 1)/M2 and H12 = 4N̄ (2N̄ + 1)/M2.
Therefore, the ultimate estimation error �2φ∗

OEGS can be
achieved by the optimal symmetric Gaussian state, which we
call the optimal entangled Gaussian state (OEGS) throughout
this paper. Most importantly, in contrast to the error �2φ∗

OPGS,
the error �2φ∗

OEGS is independent of the number of modes
M for a fixed energy N̄ and scales with M−2 for a fixed
n̄, evidently resulting from exploiting entanglement. Thus,
the mode entanglement enables one to prevent the estimation
error from growing with M.

FIG. 3. Dependence of the reduced entropy S(γ ) in the esti-
mation error when probing with symmetric Gaussian states (black
curves) in comparison with the OPGS (blue lines) and the OEGS
(red lines). (a) For the average phase estimation, the OEGS achieving
the ultimate sensitivity does not have the maximal reduced entropy.
(b) However, the OPGS is optimal for the simultaneous phase
estimation.

D. Role of entanglement

One might wonder whether the OEGS is the maximally
entangled Gaussian state, for which the entropy of the reduced
state is maximized. We now demonstrate that it is not the
case. The entropy of the single-mode reduced state having
a diagonal covariance matrix γ is given by S(γ ) = n̄T ln(1 +
1/n̄T) + ln(n̄T + 1) [21], where n̄T = √

γ1γ2 − 1/2 is the av-
erage thermal photon number of the reduced single-mode
state. The entropy S(γ ) increases with the entanglement of
the total system under investigation, where pure symmetric
Gaussian states are only considered [39]. Interestingly, the
OEGS achieving the ultimate sensitivity does not have the
maximal entropy, as shown in Fig. 3(a). This is surprising
and in contrast to other cases, where maximally entangled
states have shown to lead to the optimal sensitivity, e.g., the
GHZ state of qubits exhibiting the maximal entropy of the
reduced state [13]. In our scenario, the state often referred to
as the continuous variable GHZ-type state having the maximal
reduced entropy [40–42] exhibits worse sensitivity than the
OEGS. A similar result has been reported for estimation of
unitarily generated parameters in Ref. [10].

It is worth comparing with the error of simultaneous
phase estimation, �2φ ≡ ∑M

i=1 �2φi. For general symmetric
Gaussian states without displacement, the error can be writ-
ten as �2φ � Tr[H−1] = (M − 1)/(H11 − H12) + 1/[H11 +
(M − 1)H12], where the first term will be ignored if H11 =
H12. For a product probe state, H12 disappears and thus,

�2φ � M3

8N̄ (N̄ + M )
≡ �2φOPGS,

where the bound �2φ∗
OPGS can be achieved by the OPGS.

When using the OEGS, however, the estimation error is
given by

�2φ � M[2N̄ (M − 1) + 2M − 1]

8N̄ (N̄ + 1)
≡ �2φOEGS.

It is clear that the error �2φOEGS is larger than the error
�2φOPGS. More generally, any entangled symmetric Gaussian
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states exhibit worse sensitivity than the OPGS, as shown in
Fig. 3(b).

IV. PRACTICAL PERSPECTIVES

A. Physical implementation of the optimal scheme

We have shown above that the ultimate estimation error
�2φ∗

OEGS is achieved by the OEGS. Generation of the latter is
experimentally feasible with current technology as we provide
here. Suppose that a product state of a p-squeezed vacuum
and (M − 1) vacua is injected into the first BSN, configured
as ÛBSN = B̂M−1,M (θM−1)B̂M−2,M−1(θM−2) × · · · × B̂1,2(θ1),
where B̂i, j (θ j ) = exp[θ j (â

†
i â j − âiâ

†
j )] and θ j = arccos(M −

j + 1)−1/2. Consequently, one can show that the output state
of the BSN is the OEGS. Notice that different configurations
of BSN can be employed to generate the OEGS [16].

We demonstrate here that homodyne detection on each
mode is sufficient to achieve the ultimate error �2φ∗

OEGS
without using the second BSN. The resultant probabil-
ity distribution of homodyne detection follows a Gaus-
sian distribution with the zero first-moment vector and the
M × M covariance matrix �HD with diagonal components
[�HD]ii = γ1 cos2 ϕi + γ2 sin2 ϕi and off-diagonal components
[�HD]i j = ε1 cos ϕi cos ϕ j + ε2 sin ϕi sin ϕ j , where ϕi = φi −
θHD,i with homodyne angles θHD,i on ith mode. The er-
ror is thus given by �2φ∗

HD � wTF−1w, where Fi j =
Tr[�−1

HD(∂φi�HD)�−1
HD(∂φ j �HD)]/2. It can be easily shown that

the lower bound is equal to �2φ∗
OEGS when ϕi = ϕopt ≡

π/2 − cot−1[2
√

N̄ (N̄ + 1)]/2 for all i. Such optimal phase
setting can be made by adjusting the homodyne angles θHD,i =
φi − ϕopt.

B. Effects of loss

From a practical perspective, we analyze the effect of pho-
ton loss on the sensitivity. When loss is assumed to occur in
each mode with an equal η, the covariance matrix of the probe
state is transformed as �probe → η�probe + (1 − η)12M/2, i.e.,
γ1,2 → ηγ1,2 + (1 − η)/2 and ε1,2 → ηε1,2 [21,30]. Conse-
quently, the theoretical optimal error bounds �2φ∗

OPGS and
�2φ∗

OEGS become

�2φ∗
OPGS(η) ≡ 1/4N̄η(2N̄η/M + η + 1),

�2φ∗
OEGS(η) ≡ 1/4N̄η(2N̄η + η + 1),

respectively. When homodyne detection is performed, the
resulting error bounds are, respectively, given as

�2φ∗
OPGS,HD(η) ≡ [4N̄η(1 − η) + M]/[8η2N̄ (N̄ + M )],

�2φ∗
OEGS,HD(η) ≡ [4N̄η(1 − η) + 1]/[8η2N̄ (N̄ + 1)],

for which the homodyne angles have been appropriately cho-
sen. One may also seek other type of Gaussian measurement
that could outperform the case yielding �2φ∗

OEGS,HD(η) in the
presence of loss. We exemplify the latter by performing an
appropriate general-dyne detection on the first output mode
and heterodyne detection on the other output modes of the
second BSN that is set to realize Û −1

BSN. The associated error

FIG. 4. (a) Comparison among the estimation errors �2φ∗
OEGS(η)

(red curve), �2φ∗
OEGS,HD(η) (green curve), and �2φ∗

OEGS,GD(η) (or-
ange curve) with loss η for N̄ = 10. The estimation error of the
optimal scheme �2φ∗

OEGS(η) achieves an improvement by an order
of magnitude compared to homodyne detection and general Gaussian
detection when loss is significant. Note that there exist two crossing
points (�) between �2φ∗

OEGS,HD(η) and �2φ∗
OEGS,GD(η) as η increases.

(b) The ratio of �2φ∗
OEGS,HD(η) to �2φ∗

OEGS,GD(η) as a function of
N̄ and η. The boundary, represented by a solid line, is given by
N̄ = (1 + √

2)/2η(1 − η), at which homodyne detection and general
Gaussian detection after the second BSN (Û −1

BSN) yields the same
sensitivity. General Gaussian detection scheme becomes significant
only when N̄ > 2(1 + √

2), and exhibits the most advantage over the
homodyne detection at η = 0.5.

bound when probing with the OEGS is given as

�2φ∗
OEGS,GD(η) ≡ 2N̄ (1 − η)η + 1 +

√
1 − 4N̄η(η − 1)

8η2N̄ (N̄ + 1)
,

whose derivation and detailed setup are provided in
Appendix E. Figure 4(a) reveals that the error �2φ∗

OEGS,HD(η)
is competitive with �2φ∗

OEGS,GD(η) depending on η, and
none of them attain the ultimate error �2φ∗

OEGS(η) when
η < 1. Comparable behaviors between �2φ∗

OEGS,HD(η) and
�2φ∗

OEGS,GD(η) are elaborated in terms of N̄ and η in
Fig. 4(b), identifying the regions in which one prevails over
the other. It shows that homodyne detection is advanta-
geous when N̄ > (1 + √

2)/2η(1 − η). Interestingly, the error
bound �2φ∗

OEGS,HD(η) is exactly the same as that of a single-
mode phase estimation using a squeezed thermal state [43].
One could further reduce the error by having displacement
as in Ref. [16], or seek for non-Gaussian measurements to
achieve the ultimate error �2φ∗

OEGS(η) in lossy cases [32,43].
The enhancement of sensitivity by entanglement

can be quantified by the relative error ratio Ropt =
�2φ∗

OPGS(η)/�2φ∗
OEGS(η) for the case that an optimal

measurement is assumed, and the error ratio RHD =
�2φ∗

OPGS,HD(η)/�2φ∗
OEGS,HD(η) for the case that homodyne

detection is performed. Figure 5(a) shows that the Ropt slightly
decreases with a moderate loss η and monotonically increases
with n̄, while the RHD drastically drops with η and exhibits
the optimum at n̄ = 1/2

√
Mη(1 − η), where the relative

enhancement is maximal, when η < 1. The behaviors of Ropt

and RHD with increasing M are presented in Fig. 5(b) for
n̄ = 6. Remarkably, both Ropt and RHD are always greater
than unity in all cases with any η, stressing the usefulness of
entanglement in Gaussian distributed sensing against loss.

V. DISCUSSION

We have investigated the ultimate sensitivity of the aver-
age phase estimation in distributed quantum sensing using
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FIG. 5. The relative error ratios Ropt and RHD for the cases with
η = 1 (solid), 0.9 (dashed), 0.8 (dot-dashed), 0.7 (dotted) (a) as a
function of n̄ when M = 4, and (b) as a function of M when n̄ = 6.
The quantum enhancement offered by the optimal scheme is robust
against photon loss. Overall, loss is obviously always detrimental
for a given n̄ and M, i.e., the error ratios decrease with η. Lines
connecting dots in panel (b) are to guide the eyes.

Gaussian states. The ultimate sensitivity has been shown to
be achievable by the OEGS possessing partial entanglement
between the modes and by performing homodyne detection on
each mode in the absence of loss. When photon loss occurs,
homodyne detection ceases to be optimal, but non-Gaussian
measurement would be required for achieving the ultimate
sensitivity. Alternatively, a slightly better sensitivity can be
obtained by conducting other type of Gaussian measurement
on the output modes of the second BSN that implements
the inverse transformation of the first BSN. Although the
sensitivity decreases with loss in all the cases considered in
this work, we have revealed that using the OEGS is always
advantageous for average phase estimation as compared to
the case using unentangled symmetric Gaussian states. While
we have focused on identification of the ultimate sensitiv-
ity and the optimal setup for the average phase estimation
in this work, finding those for estimation of other linear
combinations of phases would also be an interesting future
study. Another interesting open question is to explain the
enhancement of sensitivity in a more intuitive manner such
as using the multiparameter squeezing parameter [18] other
than entanglement, which we leave for future study. Finally,
finding the optimal measurement achieving the best sensitivity
in the presence of photon-loss is also an important remaining
task as in the recent study, where the optimal non-Gaussian
measurement in a special case of M = 1 is theoretically
found [43]. The experimental implementation of the optimal
measurement needs to be devised.

It is worthwhile to discuss our results in relation to recent
results in distributed sensing. First of all, a recent experi-
ment successfully showed an enhancement by entanglement
in distributed Gaussian quantum sensing [16]. The theory
behind the experiment in Ref. [16] assumed that the phase
shifts of interest were extremely small and the estimation
error was quantified by the linear error propagation analysis
from homodyne detection. However, our work identifies the
ultimate estimation error in distributed Gaussian sensing by
proposing the optimal Gaussian probe and it can be applied
to phase shifts of arbitrary degrees. Thus, the experimental
results could be understood better and interpreted from a

broader perspective of distributed Gaussian sensing. In addi-
tion, the optimal entangled Gaussian state has been proven to
be optimal for distributed quantum sensing of field-quadrature
displacement [44–46].

ACKNOWLEDGMENTS

This work was supported by National Research Founda-
tion of Korea (NRF) grants funded by the Korea govern-
ment (Grants No. NRF-2018K2A9A1A06069933, No. NRF-
2019R1H1A3079890, No. 2019M3E4A1080074, and No.
2020R1A2C1008609).

C.O. and C.L. contributed equally to this work.

APPENDIX A: DERIVATION OF THE QUANTUM FISHER
INFORMATION MATRIX FOR DISTRIBUTED SENSING

USING ISOTHERMAL GAUSSIAN STATES

In this section, we derive the quantum Fisher informa-
tion matrix (QFIM) for distributed sensing using isothermal
Gaussian states. When a phase-encoded state is the isothermal
Gaussian quantum states characterized by [�(φ), d(φ)] with a
isothermal photon number n̄, the QFIM is given by [32]

Hi j = 1

2n̄2 + 2n̄ + 1
Tr

[
�2M

∂�(φ)

∂φi
�2M

∂�(φ)

∂φ j

]

+ ∂dT(φ)

∂φi
�−1 ∂d(φ)

∂φ j
, (A1)

where

�(φ) = S(φ)�probeST(φ), d(φ) = S(φ)dprobe,

are the covariance matrix and the first moment vector of
the quantum state after the unitary operation encoding φ

corresponding to the symplectic matrix S(φ), respectively. In
the distributed phase sensor, the symplectic transformation
corresponds to

S(φ) = ⊕M
i=1

(
cos φi sin φi

− sin φi cos φi

)
.

Note that symplectic transformation S is defined as ones
that preserve the canonical commutation relation, ST�2MS =
�2M , corresponding to a Gaussian unitary operation Û applied
to density matrices by the relation Û †Q̂Û = SQ̂.

The first term in Eq. (A1) can be simplified as

Tr

[
�2M

∂�

∂φi
�2M

∂�

∂φ j

]

= Tr

[
�2M

∂S(φ)

∂φi
�probe�2M

∂S(φ)

∂φ j
�probe

+�2M
∂S(φ)

∂φi
�probe�2M�probe

∂ST(φ)

∂φ j

+�2M�probe
∂ST(φ)

∂φi
�2M

∂S(φ)

∂φ j
�probe

+�2M�probe
∂ST(φ)

∂φi
�2M�probe

∂ST(φ)

∂φ j

]
φ=0= Tr[Pi�probePj�probe + Pi�probe�2M�probe�2MPj

+ Pj�probe�2M�probe�2MPi
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+�probePi�probePj]

= 2Tr
[
�

(i, j)
probe�

( j,i)
probe

] − δi j (2n̄ + 1)2, (A2)

where �
(i, j)
probe = Pi�probePj . Here, we have set φ = 0 without

loss of generality since the QFIM is independent of φ under
unitary transformation, and we have used

∂�(φ)

∂φi
= ∂S(φ)

∂φi
�probeST(φ) + S(φ)�probe

∂ST(φ)

∂φi

= ∂S(φ)

∂φi
�probe + �probe

∂ST(φ)

∂φi
,

and

−�2M
∂S(φ)

∂φi
= − ∂S(φ)

∂φi
�2M

= �2M
∂ST(φ)

∂φi
= ∂ST(φ)

∂φi
�2M ,

which is the projection onto the ith mode, Pi =
−�2M

∂S(φ)
∂φi

|
φ=0

when φ = 0.

The second term in Eq. (A1) is

∂dT(φ)

∂φi
�−1 ∂d(φ)

∂φ j
=

(
∂S(φ)

∂φi
dprobe

)T

�−1

(
∂S(φ)

∂φ j
dprobe

)
φ=0

= (
�2d (i)

probe

)T
[�−1](i, j)(�2d (i)

probe

)
. (A3)

Thus, substituting n̄ = 0 into Eqs. (A1)∼(A3), i.e., for pure
states and using �probe = � and dprobe = d since we have set
φ = 0, we obtain the expression of Eq. (2) in the main text.

APPENDIX B: MAXIMUM VARIANCE OF Ĝ∗

Let us derive the maximum variance of Ĝ∗ =∑M
i=1 â†

i âi/M. The variance can be written as

M2(�2Ĝ∗) = M2(〈Ĝ∗2〉 − 〈Ĝ∗〉2)

=
〈(

M∑
i=1

â†
i âi

)2〉
−

(
M∑

i=1

〈â†
i âi〉

)2

=
M∑

i=1

〈(â†
i âi )

2〉 +
M∑

i 
= j

〈â†
i âiâ

†
j â j〉

−
M∑

i=1

〈â†
i âi〉2 −

M∑
i 
= j

〈â†
i âi〉〈â†

j â j〉.

Using the fact that Ĝ∗ is invariant under any passive trans-
formation, one can assume that 〈â†

i âiâ
†
j â j〉 − 〈â†

i âi〉〈â†
j â j〉 = 0

for i 
= j without loss of generality and get

�2Ĝ∗ = 1

M2

M∑
i=1

�2(â†
i âi ),

which shows the variance of �2Ĝ∗ is the sum of the photon
number variance in all the modes. Since a squeezed vacuum
state exhibits the maximum photon number variance among

Gaussian states, which is (cosh 4r − 1)/4,

�2Ĝ∗ � 1

4M2

M∑
i=1

(cosh 4ri − 1). (B1)

Under the constraint for the total mean photon number of
the state N̄ , one can prove that the upper bound of �2Ĝ∗ in
Eq. (B1) is given by 2N̄ (N̄ + 1), i.e.,

4�2Ĝ∗ � 8N̄ (N̄ + 1)

M2
. (B2)

APPENDIX C: PROPERTIES OF THE QFIM FOR
SYMMETRIC GAUSSIAN STATES

Let us consider the QFIM having diagonal elements H11

and off-diagonal elements H12, which is then written as

H = H11

M∑
i=1

|i〉〈i| + H12

M∑
i 
= j

|i〉〈 j|

= (H11 − H12)
M∑

i=1

|i〉〈i| + H12

M∑
i, j=1

|i〉〈 j|

= (H11 − H12)1 + H12

M∑
i, j=1

|i〉〈 j|,

where {|i〉}M
i=1 represents the standard basis. By introducing

|+〉 = ∑M
i=1 |i〉/√M,

H = (H11 − H12)1 + MH12|+〉〈+|
= (H11 − H12)(1 − |+〉〈+|)

+ [(M − 1)H12 + H11]|+〉〈+|.
When H11 
= H12, the inverse of the QFIM is

H−1 = (H11 − H12)−1(1 − |+〉〈+|)
+ [(M − 1)H12 + H11]−1|+〉〈+|,

and thus

Tr[H−1] = (M − 1)(H11 − H12)−1 + [(M − 1)H12 + H11]−1.

When H11 = H12, however, the inverse of the QFIM is

H−1 = [(M − 1)H12 + H11]−1|+〉〈+|,
and thus

Tr[H−1] = [(M − 1)H12 + H11]−1.

APPENDIX D: MINIMIZATION OF THE ESTIMATION
ERROR WHEN PROBING WITH SYMMETRIC GAUSSIAN

STATES

For pure symmetric Gaussian states, the elements of the
covariance matrix satisfy

(γ1 − ε1)(γ2 − ε2) = 1/4,

[γ1 + (M − 1)ε1][γ2 + (M − 1)ε2] = 1/4, (D1)
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and the energy constraint is

N̄ = M(γ1 + γ2 − 1)/2.

Parametrizing γ1,2 as

γ1,2 = n̄Te±2r,

we can rewrite ε1,2 as

ε1,2 =
2 + 4n̄2

T(M − 2) − M ±
√(

4n̄2
T − 1

)[
M

(
4n̄2

TM − M + 4
) − 4

]
8n̄T(M − 1)

e±2r,

where 0 � r � cosh−1(2N̄/M + 1)/2.
Under the above constraint, our task boils down to finding

parameters that maximize

M
[
2
(
γ 2

1 + γ 2
2

) − 1 + 2(M − 1)
(
ε2

1 + ε2
2

)]
, (D2)

whose maximum value can be shown to be 8N̄ (N̄ + 1), in
general.

One can easily check that if we use

γ1,2 = 1

2
+ N̄ ±

√
N̄ (N̄ + 1)

M
(D3)

and

ε1,2 = N̄ ±
√

N̄ (N̄ + 1)

M
, (D4)

the maximum value of Eq. (D2), i.e., 8N̄ (N̄ + 1), is attained,
which thus proves that �2φ∗

OEGS introduced in the main text is
achievable by the symmetric Gaussian states with parameters
satisfying Eqs. (D3) and (D4).

APPENDIX E: GENERAL GAUSSIAN MEASUREMENT

In this section, we derive the lower bound of the esti-
mation error based on a particular Gaussian measurement
and provide its implementation. A measurement is called a
Gaussian measurement if it can be implemented by adding
Gaussian ancilla states with Gaussian unitary operations and
performing homodyne detection [22,30]. Mathematically, a
Gaussian measurement on M-mode states ρ̂ can be written
by positive-valued measure measure (POVM) elements {�̂ξ}

as

�̂ξ = 1

πM
D̂(ξ)�̂0D̂†(ξ),

where D̂(ξ) = exp(−iξT�2MQ̂) is a displacement operator,
and �̂0 is a density matrix of a M-mode Gaussian state with a
zero-displacement and a covariance matrix �M. Note here that
�̂0 characterizes the Gaussian measurement. Let us assume
�̂0 to be a pure state. One can easily show that the probability
distribution for a Gaussian input state with the covariance
matrix � and the first moment d is given as a Gaussian
distribution with the covariance matrix (� + �M)/2 and the
first moment d/

√
2. For the phase-encoded Gaussian state of

�(φ) with zero displacement, the Fisher information elements
based on Gaussian measurement with �M are thus given by

Fi j (φ) = 1

2
Tr

[
(� + �M)−1 ∂�

∂φi
(� + �M)−1 ∂�

∂φ j

]
.

Let us consider a Gaussian measurement �̂0 with the
following covariance matrix:

�M =

⎛
⎜⎜⎝

γM εM ... εM

εM γM ... εM
...

... ...
...

εM εM ... γM

⎞
⎟⎟⎠,

where γM = diag(γM,1, γM,2) and εM = diag(εM,1, εM,2) are
2 × 2 diagonal matrices, and γM, j = 1/2 + εM, j and εM, j =
[N̄M − (−1) j

√
N̄M(N̄M + 1)]/M for j = 1, 2. Note that the

covariance matrix is the same as that of the optimal entangled
Gaussian state with N̄ replaced by N̄M. If the phase-encoded
state is the optimal entangled Gaussian state in the presence
of loss, then one can find that the lower bound of the error can
be written as

�2φ∗ � 2ηN̄MN̄ − 2η
√

N̄M(N̄M + 1)N̄ (N̄ + 1) + N̄M − (η − 2)ηN̄ + 1

4η2N̄ (N̄ + 1)

� 2N̄ (1 − η)η + 1 +
√

1 − 4N̄η(η − 1)

8η2N̄ (N̄ + 1)
,

where the optimal value of N̄M is chosen for the second
inequality.

If we employ a squeezed thermal input state, ρ̂in =
Ŝ(r)ρ̂TŜ†(r) ⊗ |0〉〈0|⊗M−1 where Ŝ(r) = exp[r(â†2 − â2)/2]

is a squeezing operator applied on the first mode, and
ρ̂T = ∑∞

n=0 n̄n/(n̄ + 1)n+1|n〉〈n| is a thermal state with
the mean photon number n̄, the lower bound by the
aforementioned Gaussian measurement can be written
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as

�2φ∗ �
[(

2n̄ + 1

n̄ + 1

)2

sinh2 2r

]−1

,

which is exactly the same as the lower bound for single-
mode phase estimation using a squeezed thermal probe state,
as shown in Ref. [43]. Note that preparing the squeezed
thermal state input without a photon-loss channel is equiv-
alent to using the optimal entangled Gaussian state with a
photon-loss channel after adjusting appropriate parameters
when the photon-loss rates are equal to each other [47].

Let us find the implementation of the Gaussian measure-
ment corresponding to �M. Noticing that mixing a p-squeezed
state and (M − 1) vacua by the first beam splitter network
(BSN) in the main text generates the optimal entangled state,

�̂0 can be represented by

�̂0 = ÛBSN|r, 0, ..., 0〉〈r, 0, ..., 0|Û †
BSN,

where |r〉〈r| represents a p-squeezed state with a squeezing
parameter r and |0〉〈0| is a vacuum state. Since a BSN
transforms a displacement operator into another displace-
ment operator and a single-mode Gaussian measurement of
�̂ζ = D̂(ζ)�̂0D̂†(ζ)/π can be implemented by the general-
dyne measurement [48], the Gaussian measurement can be
performed by general-dyne measurement on M modes after
the second BSN that processes the reverse of the first BSN
generating the optimal entangled state. Especially when �̂0

is a vacuum, the general-dyne measurement reduces to a
heterodyne measurement.
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