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Randomness for quantum channels: Genericity of catalysis and quantum advantage of uniformness
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Randomness can help one to implement quantum maps that cannot be realized in a deterministic fashion.
Recently, it was discovered that explicitly treating a randomness source as a quantum system could double
the efficiency as a catalyst for some tasks. In this work, we first show that every quantum channel that can be
implemented with a randomness source without leaking information to it must be a catalysis. For that purpose, we
prove a new no-go theorem that generalizes the no-hiding theorem, the no-secret theorem that states no quantum
information can be shared with other systems as a secret without leaking some information. Second, we show
that nondegenerate catalysts should be used classically when no extra dimension is allowed, which leads to the
fact that the quantum advantage of a catalytic process strictly comes from the uniformness of the randomness
source. Finally, we discuss a method to circumvent the previous result that achieves quantum advantage with
nondegenerate catalyst uniformized by employing extra work space.
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I. INTRODUCTION

Randomness is a universal resource for numerous ap-
plications. Its usage ranges from everyday tasks such as
shuffling playing cards to information processing tasks such
as symmetric-key cryptography [1] and randomized computa-
tion [2]. Recently, the role of randomness as a catalyst for the
quantum state transition and the information masking process
has been studied [3–6]. The catalycity of randomness means
that the randomness is not depleted during the process. Re-
markably, it was discovered that, for some tasks, the efficiency
of a uniform randomness source can be doubled when the
source is explicitly treated as a quantum system, compared to
the case where the source is treated as a classical randomness
source such as coin tossing or dice roll [3,6].

On the other hand, the resource theory of quantum random-
ness is still in its initial stage, and many important questions
are left unanswered. Is the catalycity of randomness limited
only to some specific cases? Can an arbitrary type of ran-
domness be used as a catalyst if its entropic measures are
sufficiently high? What is the origin of the advantage of quan-
tum randomness source?

In order to answer these questions, in this work, we
advance the theory of quantum randomness for arbitrary ran-
domness sources. To distinguish the role as a randomness
source from the role as an information dump of ancillary sys-
tems in quantum information theory, we define the concept of
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randomness-utilizing process in which no information flows
to ancillary system while implementing a quantum channel.

Next, we prove a new no-go result that we call the no-secret
theorem which generalizes the no-hiding theorem [7] and the
no-masking theorem [8] stating that no quantum information
of a quantum system, however partial it is, cannot be shared
with other system as a secret without leaking some infor-
mation to it. Based on the no-secret theorem, we show that
catalycity, the conservation of randomness source throughout
the process, is a generic phenomenon by proving that ev-
ery dimension-preserving randomness-utilizing processes is
a catalysis. Even dimension nonpreserving processes are cat-
alytic if two different processes that transform the randomness
source in converse ways are used alternatively.

Second, we prove that uniformness is the source of the
advantage of catalytic quantum randomness. To this end, we
first show that there exists a gap between the upper bounds
of achievable efficiencies of classical and quantum random-
ness sources therefore quantum advantage is universal for
randomness-utilizing processes. It is then demonstrated that
nondegenerate randomness sources can be used only as a
classical catalyst. In light of the fact that nondegeneracy is
generic for probability distributions, it follows that additional
efforts such as uniformization are required in order to take
advantage of quantum randomness.

Finally, despite the newly found restrictions, adopting an
operationally natural generalization of randomness-utilizing
processes, we obtain a resource theory of randomness where
randomness is depletable and catalycity is nontrivial. In this
more general setting, in return for requiring more work space,
any randomness source with sufficiently large entropy can
be used as catalytic quantum randomness regardless of its
degeneracy.

This paper is organized as follows. In Sec. II A, we prove
the no-secret theorem and show that catalysis is generic
among randomness-utilizing processes. In Sec. II B, we show

2643-1564/2021/3(1)/013218(8) 013218-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013218&domain=pdf&date_stamp=2021-03-08
https://doi.org/10.1103/PhysRevResearch.3.013218
https://creativecommons.org/licenses/by/4.0/


SEOK HYUNG LIE AND HYUNSEOK JEONG PHYSICAL REVIEW RESEARCH 3, 013218 (2021)

that the advantage of quantum randomness source comes from
the degeneracy, or the uniformness, of a randomness source.
In Sec. II C, we introduce a method that can circumvent the
restriction and utilize a nonuniform randomness source. In
Sec. III, we summarize the paper and discuss open problems.

II. MAIN RESULTS

A. Genericity of catalysis

Every quantum channel can be realized with unitary inter-
action with an ancillary system, according to the Stinespring
dilation theorem [9]. Considering that no quantum infor-
mation can be destroyed by unitary evolution, for every
irreversible quantum channel, a role of the ancillary system
is storing information removed from the main system. It is
demonstrated in the extreme case by the no-hiding theorem
[7] (and equivalently the no-masking theorem [8]), which
states that when a quantum state is disappeared from a system,
then it should be recoverable from its purification system, i.e.,
environment. Therefore, implementation of quantum channel
seemingly leaks information to the ancillary system, which is
true for initially pure ancillary state because of the conserva-
tion law of quantum information [6].

On the other hand, the space of quantum correlation of
mixed bipartite state is vast and capable of containing the
whole space of local quantum state, which was shown by the
possibility of ((2,2))-threshold secret sharing or randomized
quantum masking [5,6,10]. It overcomes the previous result
that forbids the quantum masking utilizing only pure states,
known as the no masking theorem [8]. It means that one
can implement an erasure map, which completely destroys
the information of an input state, by utilizing the correlation
between two systems, not the local marginal state of ancillary
system itself, as its information dump. In that situation, even
though the information itself is not destroyed and could be
faithfully recovered globally, still no local system can access
to the information. Does it mean that the erased information
is the secret between and only between them?

The answer is negative, since every purification of ((2,2))-
threshold quantum secret sharing scheme is a ((2,3))-threshold
quantum secret sharing scheme [10,11], meaning that quan-
tum state shared as a secret with the ancillary system can be
also restored with its purification system. In short, no quantum
state can be shared as secret between only two systems. One
can ask if this result holds for general quantum channels other
than erasure channels. Maybe this result is the consequence
of trying to hide the whole quantum state, in contrast to
hiding partial information such as classical information within
quantum system. To answer this question, we first give a for-
mal definition of implementation of quantum channel without
leaking information to its local ancillary system.

We denote quantum systems by uppercase alphabets
(A, B, . . . ) and their corresponding Hilbert spaces as HA. The
space of operators on H will be written as B(H). We will say
a map defined on B(H) is d-dimensional if dim H = d . In
this work, we will only consider finite-dimensional systems.
For an ancillary system not to gain information through the
implementation of quantum channel, it should not depend on
the input state of the channel. In that case, we can say that the

ancillary system only functions as a source of randomness.
Therefore, we say that a quantum channel � on B(HA) is
randomness-utilizing when it can be expressed as

�(ρ) = TrBU (ρ ⊗ σ )U †, (1)

with some unitary operator U on HA ⊗ HB and a randomness
source σ , which is a quantum state on HB, and TrAU (ρ ⊗
σ )U † is a constant quantum state independent of ρ. We
will sometimes call the whole process U (ρ ⊗ σ )U †, not the
channel � itself, a randomness-utilizing process. The second
condition is imposed since we only want the randomness
source to provide randomness to the given process and do
not want it to function as an information storage. In fact, if
we do not impose the second condition, any quantum map
can be expressed in the form of (1) by using Stinespring
dilation. We will call the constant output of TrAU (ρ ⊗ σ )U †

corresponding to a randomness-utilizing quantum process as
the residue randomness of the process.

When the residue randomness has the same spectrum (the
set of eigenvalues including degeneracy) with the randomness
source, we say the randomness-utilizing process is catalytic
or the process uses the randomness catalytically. A catalytic
channels is a channel that has a catalytic randomness-utilizing
process implementation. It is because, in that case, one can
use the residue randomness as the randomness source of the
same process for another uncorrelated input.

In the following, we will use the family of Rényi entropies
{Sα} given as [12]

Sα (ρ) = 1

1 − α
log2 Trρα, (2)

for 0 < α. We also define the max-entropy S0(ρ) :=
limα→0 Sα (ρ) = log2 rank ρ and the min-entropy S∞(ρ) :=
limα→∞(ρ) = − log2 maxi ρi, where {ρi} is the spectrum of
ρ. We note that S1 := limα→1 Sα is the usual von Neumann
entropy.

Now we are ready to prove the following result, which we
call the no-secret theorem (See Fig. 1). Here, we say that a
bipartite unitary WXY restores the input state ρ of the system X
of channel �(ρ) that maps ρ to a bipartite state of the system
XY if TrY WXY �(ρ)W †

XY = ρ for every ρ.
Theorem 1 (The no-secret theorem). Assume that σB is a

quantum state whose purification is |�〉BC on the system BC.
For any randomness-utilizing quantum channel � acting on
A implemented with σB as the randomness source, the input
state of � can be restored with a unitary operator on AC.

Proof. Assume that τB is the residue randomness of the
process and |T 〉BC is its purification. Following the nota-
tion of Eqn. (1), for a maximally entangled state |	〉RA :=

1√
d

∑d
i=1 |i〉R|i〉A, the definition of randomness-utilizing pro-

cess can be equivalently expressed as the following equation
through the Choi-Jamiołkowski isomorphism [13,14],

TrAUAB(|	〉〈	|RA ⊗ σB)U †
AB = 1

d
1R ⊗ τB. (3)

A purification of the left-hand side is UAB|	〉RA ⊗ |�〉BC , and
a purification of the right-hand side is |	〉RA ⊗ |T 〉BC . Since
every purification of the same mixed state is unitarily similar
to each other on the purification system, there exists a unitary

013218-2



RANDOMNESS FOR QUANTUM CHANNELS: GENERICITY … PHYSICAL REVIEW RESEARCH 3, 013218 (2021)

FIG. 1. Assume that A implements a quantum channel by using
B as an ancillary system without leaking information to B, where
systems BC are initially prepared in a pure state. The no-secret
theorem states that systems AC can always recover the input state
of the channel. No quantum information can be shared with other
system as a secret without leaking some information.

operator VAC on the system AC such that

UAB|	〉RA ⊗ |�〉BC = VAC |	〉RA ⊗ |T 〉BC . (4)

It follows that TrBCV †
ACUAB(ρA ⊗ σB)U †

ABVAC = ρA, which im-
plies that the input state ρ is restored by applying the unitary
operator V †

AC on AC. �
The no-secret theorem says that it is impossible to share

any quantum information with some party, not limited to
sharing the whole quantum state, without leaking some infor-
mation. For example, in quantum masking with pure states [8],
hiding phase information of a quantum system in a bipartite
state is possible, but it accompanies the leakage of amplitude
information.

Actually, the no-secret theorem is a stronger no-go result
than the no-hiding theorem (or equivalently the no-masking
theorem) since a stronger version of the no-hiding theorem
can be derived from the no-secret theorem. Here, an irre-
versible quantum channel C is a channel that has no recovery
channel R such that R ◦ C(ρ) = ρ for any input state ρ. An
erasure channel is one example of irreversible channel.

Corollary 1 (Stronger no-hiding theorem). No irreversible
quantum channel can be implemented without leaking some
information to the ancillary system initially prepared in a pure
state.

Proof. We follow the notations of the proof of Theorem
1, but we assume that σB is a pure state this time, i.e.,
σB = |s〉〈s|B, hence its purification should be a product state
|�〉BC = |s〉B|t〉C . We negate the stronger no-hiding theorem
and assume that an irreversible � can be implemented through
a randomness-utilizing process with a unitary operator UAB

and a pure randomness source. The system C in a pure state
|t〉C , however, need to be uncorrelated to any other system,
so the marginal state of AC should be in the product state
�(ρ)A ⊗ |t〉〈t |C for any input state ρA. From the no-secret
theorem, there exists a unitary operator V †

AC acting on AC that
recovers the input state ρ, i.e., TrCV †

AC�(ρ)A ⊗ |t〉〈t |CVAC =
ρA. However, it implies that the quantum channel R(·) :=

TrCV †
AC�(·)A ⊗ |t〉〈t |CVAC is the recovery map of �, which

contradicts the assumption that � is an irreversible quantum
channel. �

From the proof of theorem 1, one can see that both UAB

and VAC implement the same quantum channel on the system
A from their identical Choi matrices, but the transformation
of their randomness sources are converse to each other. Hence
the following corollary is obtained.

Corollary 2. For any randomness-utilizing process that
transform the source of randomness as σ → τ , there ex-
ists another randomness-utilizing implementation of the same
quantum channel that transforms the source of randomness as
τ → σ .

Randomness-utilizing process usually randomizes its input
states, and by doing so it decays information. There are the
two most typical examples of such processes, dephasing and
erasure maps. By dephasing map with respect to a basis {|i〉}
we mean quantum maps of the form

D(ρ) =
∑

i

〈i|ρ|i〉|i〉〈i|.

Similarly by erasure map, we mean quantum maps of the form

E (ρ) = τ,

with some fixed quantum state τ . However, if we try to imple-
ment an erasure map as a randomness-utilizing process, then
it is proven that [5,6,15] the output state τ should have the von
Neumann entropy larger than log2 d , where d is the dimension
of the input state’s Hilbert space. Therefore, if we insist the
output system of the erasure map has the same dimension as
the input system, then the output state of the map must be
the maximally mixed state, i.e., 1

d . Afterwards, by the erasure
map, we mean the constant quantum map that outputs the
maximally mixed state, which is also known as the completely
depolarizing map.

In Ref. [3], a special case of randomness-utilizing de-
phasing map was studied, where the randomness source is
limited to be maximally mixed state, i.e., a uniform random-
ness source and the whole process is required to be catalytic.
The lower bound of the size of the randomness source was
derived in Ref. [3] with this restriction, which is half the size
of the system being dephased. One might ask, however, if
this randomness nonconsuming property is a special prop-
erty that other generic randomness-utilizing processes do not
have. First, we show that randomness-utilizing implementa-
tion of dimension-preserving quantum channels should never
decrease the amount of randomness.

Here, that a probability distribution p = (pi )n
i=1 ma-

jorizes another distribution q = (qi )n
i=1, i.e., p 	 q, means

that
∑k

i=1 pi �
∑k

i=1 qi for all k = 1, . . . , n and for quantum
states ρ 	 σ means that their spectra are in majorization re-
lation. A dimension-preserving quantum map is a quantum
map whose input and output systems have the same finite
dimension, so that their Hilbert spaces are isomorphic.

Proposition 1. For any dimension-preserving randomness-
utilizing quantum channel transforming its randomness source
as σ → τ , the initial randomness majorizes the residue ran-
domness, i.e., σ 	 τ .
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Proof. Consider an arbitrary randomness-utilizing quan-
tum channel C : B(HA) → B(HA) and its randomness source
σ with unitary operator W on HA ⊗ HB such that

C(ρ) = TrBW (ρ ⊗ σ )W †, (5)

and TrAW (ρ ⊗ σ )W † = τ for any state ρ. Now we define
ηAB := W (1d ⊗ σ )W †. Then we evaluate the α-Rényi entropy
of ηAB, i.e., Sα (ηAB), which is same as Sα (1d ⊗ σ ) = log2 d +
Sα (σ ), because of the fact that unitary operators do not change
the Rényi entropy and the additivity of the Rényi entropy.
Next, from the weak subadditivity of the Rényi entropy [16],
i.e.,

Sα (ηAB) � S0(ηA) + Sα (ηB), (6)

we have log2 d + Sα (σ ) � S0(C(1d )) + Sα (τ ) � log2 d +
Sα (τ ) since S0(ηA) � log2 d as A is a d-dimensional quantum
system. Thus we get Sα (σ ) � Sα (τ ) for any α � 0. It implies
σ 	 τ . �

This result provides an important perspective on the
randomness consumption of quantum processes: it is not ran-
domness per se that is consumed in the process, but it is its
uncorrelatedness with other system, which is often referred to
as privacy.

Combined with corollary 2, we obtain the following the-
orem that says the catalytic usage of quantum randomness is
generic.

Theorem 2. Every dimension-preserving randomness-
utilizing process is catalytic.

Proof. If a dimension-preserving randomness-utilizing
process transforms its randomness source as σ → τ , by
corollary 2, there must be another dimension-preserving
randomness-utilizing process that transforms its randomness
source as τ → σ . From proposition 1, we get both σ 	 τ and
τ 	 σ , which is possible only when their spectra are identical,
which in turn implies that the whole process is catalytic. �

We also obtained a significant constraint on the set
of quantum channels that can be implemented through
randomness-utilizing process. Here, a unital channel � is
a quantum channel that preserves the identity operator, i.e.,
�(1) = 1.

Theorem 3. Only unital quantum channels among
dimension-preserving channels can be implemented through
randomness-utilizing process.

Proof. We use the assumptions and notations of the proof
of proposition 1. This time, we use the subadditivity of von
Neumann entropy [17] for ηAB = W (1d ⊗ σ )W †, i.e.,

S(ηAB) � S(ηA) + S(ηB). (7)

Here, S(ηAB) = S(1d ⊗ σ ) = log2 d + S(σ ) and S(ηB) =
S(σ ) as ηB = σ from the catalycity. It follows that log2 d �
S(ηA), which is achievable only when ηA = C(1d ) = 1

d , i.e., C
is unital. �

Since every unital channel never decreases entropy
[18], theorem 3 implies that every (dimension-preserving)
randomness-utilizing channel not only can be implemented
with a randomness source but also only can randomize its
input states.

From theorems 2 and 3, we can see that the set of catalytic
channels forms an interesting subclass of the set of unital

FIG. 2. Inclusion relations between the sets of random unitary
(RU ), catalytic (Cat) and unital (Unital) channels. It is known that
in general dimension RU and Unital are not identical. It is still
unknown if the inclusions RU ⊆ Cat and Cat ⊆ Unital are proper.

channels that contains the set of random unitary channels (See
FIG. 2.). The von Neumann-Birkhoff theorem [19] states that
every doubly stochastic matrix can be expressed as a convex
sum of permutations. However, it is known that the quantum
counterpart of doubly stochastic matrix, unital map, does not
allow an expression in the form of convex sum of unitary
operations [20]. In other words, the von Neumann-Birkhoff
theorem does not hold in quantum mechanics. It implies that
the set of random unitary channels is a proper subset of the
set of unital channels. We still do not know if every unital
channel is catalytic or every catalytic channel is a random
unitary channel.

We can observe that the set of catalytic channels is another
natural quantum generalization of the set of permutation op-
erations in the sense that both operations being mixed and the
usage of randomness are quantum, in contrast to the classical
usage of randomness in random unitary channels. Therefore
we conjecture a quantum version of von Neumann-Birkhoff
theorem: every unital channel is a catalytic channel. At this
point, we only know that all three sets are convex from the
following proposition.

Proposition 2. The set of catalytic channels is convex.
Proof. Let �1 and �2 be catalytic channels on the same

system A that have respective catalytic processes given
as �1(ρ) = TrB1U1(ρ ⊗ σ1)U †

1 and �2(ρ) = TrB2U2(ρ ⊗
σ2)U †

2 . Note that systems B1 and B2 can be systems
with different dimensions. Then, for any 0 � p � 1, any
convex combination � = p�1 + (1 − p)�2 can be cat-
alytically implemented with catalyst σ = σ0 ⊗ σ1 ⊗ σ2 on
system B = B0B1B2 where σ0 = p|0〉〈0|B0 + (1 − p)|1〉〈1|B0

is a two-dimensional mixed state with the controlled
unitary U = |0〉〈0|B0 ⊗ U1 ⊗ 1B2 + |1〉〈1|B0 ⊗ 1B1 ⊗ U2, i.e.,
�(ρ) = TrBU (ρ ⊗ σ )U †. �

Corollary 2 also has a very significant consequence for
dimension nonpreserving randomness-utilizing processes. As
there are two ways to implement the same randomness-
utilizing map that maps the randomness source in both
directions, e.g., σ → τ and τ → σ , it follows that ev-
ery randomness-utilizing channels can be implemented
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catalytically when two processes are used alternatively. It
shows that indeed catalysis is generic among randomness-
utilizing processes.

Theorem 4. For arbitrary randomness-utilizing quantum
channel � on A, there is a catalytic randomness-utilizing pro-
cess that implements � on two copies of A, i.e., A1A2 such that
TrA1�(ρA1 ⊗ σA2 ) = �(σ ) and TrA2�(ρA1 ⊗ σA2 ) = �(ρ) for
all ρ and σ .

We remark that theorem 4 has a striking formal re-
semblance with the result of Ref. [21], which states that
O(d )-covariant unital channels that are not random unitary
operations, a special class of catalytic processes, can become
one by taking two copies of it. However, also note that � in
theorem 4 is different from a simple two-copy version of �,

i.e.. �⊗2, since two parties can be correlated even for product
inputs.

B. Quantum advantage of degeneracy

Next, we investigate the nature of catalytic quantum
randomness. To do so, we first examine the previously
assumed conditions on randomness sources. In this sec-
tion, we assume that every randomness-utilizing channel is
dimension-preserving. In Ref. [22], noisy operations were
considered, which are the quantum maps of the form of (1) but
with uniform randomness sources. In the resource theory of
nonequilibrium, maximally mixed states are considered free
since it can be interpreted that they have reached equilib-
rium, so that they are useless in the thermodynamic setting.
In Ref. [3], however, the same noisy operation formalism is
adopted for resource-theoretic approach to randomness. From
that perspective, maximally mixed state is no longer free but a
highly desirable form of randomness compared to nonuniform
randomness [23,24].

However, randomness sources are in general nonuniform
and usually require some kind of uniformization for applica-
tions [25]. A canonical example of such randomness source
is thermal state with nondegenerate Hamiltonian. In fact, al-
most every finite probability distribution and quantum state
is nondegenerate and any degenerate probability distribution
can be turned into a nondegenerate one with arbitrarily small
perturbation. The following theorem shows that almost every
randomness source cannot be used quantumly.

Theorem 5. Any randomness-utilizing process using non-
degenerate randomness source as a catalyst is a random
unitary map in which randomness is used classically.

Proof. We continue from the proof proposition 1, but we
can assume that now C is an arbitrary randomness-utilizing
unital map by theorem 2. As initial and residue randomness
are unitarily similar, i.e., τ = RσR† for some unitary operator
R, by making W absorb R, without loss generality we can
assume τ = σ . Let us define the ‘reciprocal’ channel of C for
each input ρ,

Ĉρ (ξ ) := TrAW (ρ ⊗ ξ )W †. (8)

Observe that σ is a fixed point of Ĉρ for arbitrary ρ. Consider
the case of ρ = 1

d . For this case, Ĉ 1
d

is an unital quantum chan-

nel and one can decompose Ĉ 1
d

into Kraus operators {Knm}
such that Ĉ 1

d
(ξ ) = 1

d

∑
nm KnmξK†

nm given as Knm = (〈n| ⊗
1)W (|m〉 ⊗ 1). Since HA is a finite-dimensional Hilbert

space, σ being a fixed point of Ĉ 1
d

implies that every Knm

commutes with σ [26]. However, since σ is assumed to be
nondegenerate, it implies that every Knm is diagonal in the
eigenbasis of σ . As a result the bipartite unitary W is diagonal
in the system B, i.e., W is a controlled unitary of the form

W =
∑

m

W A
m ⊗ |m〉〈m|B, (9)

where Wm are unitary operators on HA and σ = ∑
m qm|m〉〈m|

is the unique spectral decomposition of σ . Therefore we get
the following random unitary expression of the channel C:

C(ρ) =
∑

m

qmWmρW †
m . (10)

It implies that the usage of randomness in this process is
classical, i.e., C is implemented by applying Wm depending on
the random variable m sampled from the distribution {qm}. �

When we say that a probability distribution (pi ) is used
classically, we mean that it is used to implement the convex
sum of deterministic processes, i.e., unitary maps, in the form
of random unitary like

∑
i piUiρU †

i . Note that even if we
give up the exact implementation of the desired map, the
requirement of catalycity still forces the approximate map to
be a random unitary map. Being forced to use randomness
classically undermines the efficiency of randomness-utilizing
process.

Hereby we examine the quantum advantage of randomness
usage in resource theory of randomness for nondegener-
ate randomness sources. The following theorem unifies the
pre-existing results on the advantage of using quantum ran-
domness sources. Here, the entanglement-assisted classical
capacity of a quantum channel N , CEA(N ), is the classical
capacity achievable with the channel N with pre-distributed
entangled state between two parties.

Theorem 6. A d-dimensional randomness-utilizing unital
channel with the entanglement-assisted classical capacity CEA

requires a classical randomness source with at least 2 log2 d −
CEA of min-entropy or a quantum randomness source with at
least log2 d − 1

2CEA of min-entropy.
Proof. Theorem 6 follows from theorem 2 of Ref. [6]. We

state it here for the completeness.
Lemma 1. Consider a quantum channel N , a convex sum

of quantum channels {Ni}, i.e.,
∑

i piNi = N . For all i, the
difference of the entanglement-assisted classical capacity CEA

of Ni and N has the following upper bound,

CEA(Ni ) − CEA(N ) � − log2 pi. (11)

Every randomness-utilizing process �(ρ) = TrBU (ρ ⊗
σ )U † can be expressed as a convex sum of the form
�(ρ) = ∑

i pi�i(ρ) with �i(ρ) = TrBU (ρ ⊗ |i〉〈i|)U † when
the randomness source σ has the spectral decomposition
of σ = ∑

i pi|i〉〈i|. We define the complementary channel
for each �i as �̃i(ρ) = TrAU (ρ ⊗ |i〉〈i|)U †. Note that �̃ :=∑

i pi�̃i should be a constant channel from the definition of
randomness-utilizing processes, thus CEA(�̃) = 0.

Using the following expression [27,28] of the
entanglement-assisted classical capacity of N : A′ → B,

max
φAA′

I (A : B)τAB = CEA(N ), (12)
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where φAA′ is a pure state on AA′ and τAB = (1A ⊗
NA′→B)(φAA′ ), we get the following bound by applying lemma
1 for each �i and �̃i,

max{I (R : A)τRA − CEA, I (R : B)τRB} � − log2 pi, (13)

for an arbitrarily given bipartite pure state φRA with τRAB =
(1R ⊗ U )(φRA ⊗ |i〉〈i|B)(1R ⊗ U †) and CEA := CEA(�).
From the information conservation law for pure tripartite
states [6],

2S(R) = I (R : A) + I (R : B), (14)

by choosing an arbitrary maximally entangled state φRA, we
get

max{2 log2 d − CEA − I,+I} � − log2 pi, (15)

where I := I (R : B)τRB . Now, for classical catalysis, U should
be a conditional unitary conditioning on the eigenba-
sis of σ , so we get I = 0. The lower bound Smin (σ ) =
− maxi log2 pi � 2 log2 d − CEA follow from the minimiza-
tion over i. The general bound for quantum catalysis follows
from the minimization the lower bound over I , which
is achieved at I = log2 d − 1

2CEA, and we get Smin (σ ) �
log2 d − 1

2CEA. �
For example, by noting that a dephasing map has CEA =

log2 d and the erasure map has CEA = 0, the known bounds
for randomness costs for dephasing maps and erasure maps
[3,6,29] can be derived from theorem 6. Note that theorem 6
shows the existence of a gap between classical and quantum
bounds but the bounds may not be tight. For instance, there
are some unital maps that do not permit classical catalytic
implementation [20]. Nevertheless, the min-entropy in the
region between log2 d − 1

2CEA and 2 log2 d − CEA is forbid-
den for any classical catalyst, we will say that catalysis with
min-entropy in that region achieves the quantum advantage of
randomness usage. Hence, theorem 5 implies that the quantum
advantage cannot be attained if the randomness source is
nondegenerate.

We summarize the implication of the previous results for
the two most important randomness-utilizing process as the
following corollary.

Corollary 3. If the randomness source of a d-dimensional
randomness-utilizing dephasing (erasure) map is nondegen-
erate, it should have the min-entropy larger than or equal to
log2 d ( 2 log2 d ).

This lower bound is twice larger than the minimal values of
1
2 log2 d for dephasing maps [3] and log2 d for erasure maps
[5,6]. Considering that the maximally mixed state, which
could attain the minimal randomness cost, can be arbitrarily
close to a nondegenerate state, we can see that being uniform
is the key property for a quantum randomness source.

On the other hand, classical randomness source need not be
uniform to function properly. For example, a nondegenerate
randomness source given as (1/8, 3/8, 1/2) can implement a
dephasing map. See that by applying I for the first and the
second outcome and applying the Pauli Z operator to a qubit
system for the last outcome, one can completely dephase the
qubit with respect to the computational basis. More generally,
for a given probability distribution {pm}, if one can find a

family of real parameters {θnm} such that
∑

m

pm exp i(θnm − θn′m) = δnn′ , (16)

then one can dephase a quantum system with a randomness
source with the spectrum {pm} and the set of unitary opera-
tors {Zm := ∑

n exp(iθnm)|n〉〈n|}. However, to the best of our
knowledge, there is no known complete characterization of
classical randomness source that can be used for dephasing
or erasure maps. The contrast against classical randomness
characterizes uniformness as the essence of quantum catalytic
randomness.

C. Utilization of nonuniform randomness

Are generic nondegenerate randomness sources useless as
a quantum randomness source, after all? We show that, if we
generalize the definition of randomness-utilizing process, any
randomness source with high enough min-entropy can be used
as a quantum randomness source. We will say that a quantum
map � is a generalized randomness-utilizing implementation
of another process � on B(HA) if there exists a bipartite
unitary U on HA ⊗ HB and a randomness source σ such that

�(ρ) = TrBU (ρ ⊗ σ )U † = T (�(ρ)), (17)

where T is an invertible quantum map, i.e., there exists an-
other quantum map R such that R ◦ T = I. This generalized
definition says that, intuitively, if we can restore the output
of the desired process deterministically from the output of an
actually implemented process, we will consider it legitimate
implementation. However, from the result of Ref. [30], every
invertible quantum map can be expressed as paring with an
ancillary state followed by a unitary operation, i.e., the form
of (1) without partial trace TrB. Thus, by making U in (17)
absorb the unitary operators in T , we can actually re-express
the definition of generalized randomness-utilizing implemen-
tation � of process �

�(ρ) = TrBU (ρ ⊗ σ )U † = �(ρ) ⊗ τ, (18)

with some constant quantum state τ independent of input ρ.
(See Fig. 3.) In every practical sense, this definition is oper-
ationally legitimate. Every machine producing a certain type
of product always produces accompanying byproducts such as
noise, heat, dust, or vibration. Nevertheless, as long as those
byproducts can be unambiguously separated from the desired
output, it is natural to say that the process was implemented as
desired. Therefore we will call the uncorrelated byproduct τ

of (18) as the leftover randomness of the randomness-utilizing
process �.

We also generalize the notion of catalycity. If the residue
randomness of � in (18) can be repeatedly used for another
generalized randomness-utilizing implementation (which can
be different from the original implementation) of the same
process as the randomness source, we will say that the
randomness usage in the implementation is catalytic. This
generalization is also operationally reasonable since the
exact form of a catalyst need not be preserved as long as
its “catalytic power” is conserved during the process. This
generalization is depicted in Fig. 3 as the transformation of the
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FIG. 3. A generalized randomness-utilizing process �. If one in-
tends to implement a certain quantum map � utilizing a randomness
source σ which has large enough min-entropy but is not a uniform
random state, it could be implemented if one employs a broader
notion of catalycity and allows the uncorrelated leftover randomness
in the output state.

randomness source σ to σ ′, which can be recycled for another
round of randomness-utilizing process.

We remark that in this generalized setting, nondecreasing
property of randomness is not forced unlike the original set-
ting. The proof of proposition 1 depends on the fact that the
output system of the process has the same dimension as the
input system, but in the generalized setting the output system
can be much larger than the input system. In fact, extracting
randomness of a randomness source and injecting it into the
output state is allowed, therefore randomness can be actually
consumed in this setting.

Nevertheless, in this generalized setting, it is indeed possi-
ble to catalytically use a nondegenerate state as a quantum
randomness source. The following theorem is proved in
Ref. [31], and we state it here for completeness.

Proposition 3. [31] Any quantum state σ with S∞(σ ) �
log2 d (or S∞(σ ) � 2 log2 d) can be catalytically used as the
randomness source for a generalized randomness-utilizing
implementation of a d-dimensional dephasing map (or the
erasure map).

A sketch of proof is as follows: by the Birkhoff-von Neu-
mann theorem [19,32], every finite probability distribution
with the min-entropy larger than or equal to log2 d can be
expressed as a convex sum of uniform distribution with the
supporter of size d . Therefore, by conditionally generating
a randomness source, we can randomly choose one of those
uniform distributions and extract it. This randomness can be
generated by creating its purification and distributing it to two
local systems. It is possible because the creation of entangled
pure state can be done via unitary operation. By using the
extracted uniform randomness, we can implement the desired
process. As a result, both parties have some leftover random-
ness but it is allowed from the definition of the generalized
randomness-utilizing processes. A detailed proof can be found
in Ref. [31].

Proposition 3 shows that when extra work space is al-
lowed, one can generate “bound” randomness by sharing
an entangled state in the extra space that can be used for
uniformizing a nondegenerate randomness source. This, in a
sense, demonstrates the usage of “catalyst for catalyst.” This

type of “expanding space to achieve uniformity” was also used
in Ref. [33].

III. CONCLUSION

We showed that when randomness is utilized to implement
quantum maps, it is not expendable but inevitably reusable. It
follows from a new no-go result on multipartite quantum se-
cret sharing, we named the no-secret theorem. Especially, for
dimension-preserving channels, randomness sources cannot
be used noncatalytically and in general every randomness-
utilizing channel can be catalytically implemented if it is
implemented twice at a time. We further found that the
quantum advantage of randomness is common for arbitrary
randomness-utilizing processes and it requires uniformness of
the randomness source. Even if the source’s entropic measures
are arbitrarily high, it cannot be used as a quantum catalyst
if it is nondegenerate. These two restrictions distinguish the
resource theory of randomness from other types of quantum
resource theories, but we also found that allowing expan-
sion of dimension after randomness-utilizing process could
circumvent both restrictions. It was done by showing that it
is still possible to take advantage of catalytic quantum ran-
domness in the generalized setting if the randomness source’s
min-entropy is high enough.

We remark that we focused on exact realizations of catal-
ysis in contrast to Refs. [33,34] where the framework was
generalized to approximate realizations but with the cost of
having to prepare arbitrary many and arbitrarily large catalysts
to achieve the desired level of accuracy. This work is more
relevant to a realistic situation where the user has one given
randomness source, not a set of multiple sources, and tries to
assess its capability for various tasks. Furthermore, theorem 6
can be applied for arbitrary quantum maps, hence actually one
can still use the results of this work to analyze approximate
catalysis.

An interesting direction for future works is to prove
the existence of and constructing catalytic implementations
achieving the lower bounds of theorem 6 for both classical
and quantum catalyst cases. Another intriguing topic is to
rigorously establish the resource theory of uncorrelatedness of
randomness sources as mentioned in this work. It would also
be interesting to investigate the inclusion relation of Fig. 2.
If it turns out that RU = Cat , it would imply that quantum
randomness has quantitative but there is no qualitative advan-
tage compared to classical randomness. On the other hand,
if Cat = Unital , it would imply that there are some unital
maps that must leak some information to whatever system it
interacts with to implement the channel.
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