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Catalytic quantum randomness as a correlational resource
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Catalysts are substances that assist transformation of other resourceful objects without being consumed in
the process. However, the fact that their “catalytic power” is limited and can be depleted is often overlooked,
especially in the recently developing theories on catalysis of quantum randomness utilizing building correlation
with catalyst. In this work, we establish a resource theory of one-shot catalytic randomness in which uncorrelat-
edness is consumed in catalysis of randomness. We do so by completely characterizing bipartite unitary operators
that can be used to implement catalysis of randomness using partial transpose. By doing so, we find that every
catalytic channel is factorizable, and therefore there exists a unital channel that is not catalytic. We define a
family of catalytic entropies that quantifies catalytically extractable Rényi entropies from a quantum state and
show how much the degeneracy of a quantum state can boost the catalytic entropy beyond its ordinary entropy.
Based on this, we demonstrate that a randomness source can be actually exhausted after a certain amount of
randomness is extracted. We apply this theory to systems under superselection rules that forbids superposition
of certain quantum states and find that nonmaximally mixed states can yield the maximal catalytic entropy. We
discuss implications of this theory to various topics, including catalytic randomness absorption, the no-secret
theorem, and the possibility of multiparty infinite catalysis.
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I. INTRODUCTION

A catalyst is a substance that accelerates or initiates chem-
ical reactions without being consumed or destroyed. This
concept has been adopted in the context of quantum in-
formation for manipulation of entanglement, coherence, and
realization of thermal operations. Recently, a generalized con-
cept of catalytic randomness for state transitions has been
explored [1–6]. In this generalized setting, a randomness
source, a mixed quantum state that serves as a source of ran-
domness for otherwise deterministic process, is catalytically
used in the sense that its state remains unchanged after the
interaction taking place. However, the randomness source, as
a catalyst, is allowed to be correlated with other quantum
systems in the course of interaction so that immediate recycle
of the catalyst is sometimes impossible for the interaction with
the very same quantum system it interacted with.

However, change of relationship affecting the usability of
catalyst is never a new phenomenon in quantum information.
Even in the original context of chemistry, a catalyst C catalyz-
ing the reaction transforming compound A into substance B
may not interact with B at all even though it is not physically
damaged or altered. We can interpret it as that there is a
“catalytic power” that used up in catalysis, and C has no
catalytic power in relation to B.
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An example in information theory of such phenomena is
one-time pad. One-time pad is a table of random numbers that
can be used for secure cryptographic communication. Note
that the table itself remains intact and random for someone
who never interacted with it, but a user cannot use the same
table twice lest the communication becomes insecure, hence
the name “one-time pad.” These observations motivate the
explicit identification and treatment of this relational resource
being consumed in information processing processes.

In this work, we set to establish such a theory for catalytic
randomness for implementing quantum channels. We identify
uncorrelatedness is the resource being consumed in catalysis,
and show that randomness produced in the process is extracted
from such uncorrelatedness. As a result, we define a quantity
called catalytic entropy for arbitrary quantum state, which
equals to the maximal amount of entropy that can be extracted
from the quantum state through catalysis. A significant conse-
quence is that a randomness source correlated enough with
the user can be depleted. Using randomness source can be
compared to checking a book out of a library. If a reader
checks out the same book multiple times because she cannot
finish the book in one read, then whenever she returns the
book, it should be made sure that the book is in its original
state, undamaged and unspoiled. Nonetheless, as an informa-
tion resource, a book can be “depleted” to a particular reader
when the reader finishes reading. As long as the book itself
is maintained perfectly, however, the book can be read again
and again by different readers. Randomness sources including
books are both a “catalyst” and a depletable resource in this
sense. This perspective on randomness aligns with more con-
ventional resource theories in quantum information science in
which a resource has extensive quantity that can be produced
or consumed.
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We also generalize the theory of catalytic quantum ran-
domness. First, we characterize the bipartite unitary operators
that are still unitary after partial transposition as catalysis
unitary operators. For this purpose, we show that every catal-
ysis unitary operator is compatible with maximally mixed
catalyst, and show that catalysis unitaries should have the
controlled-unitary form with they are compatible with nonuni-
form catalysts. We also discuss about catalysts given in
an already correlated form and randomness deposit through
catalysis. Next, we introduce a few advantages of the approach
that treats the correlation formed between the system and
catalyst explicitly, including the infinite multiparty catalysis.
In doing so, we show that the partial transpose of a catalysis
unitary operator has an operational meaning as the recovery
map that recovers the input state of the catalysis encoded in
the correlation with environment.

II. NOTATIONS

We will denote the marginal state of a multipartite quantum
state ρABC... on the system A as ρA. However, the system
subscripts will be omitted when it is obvious from context.
Similarly, an operator with system indices that do not include
the whole set of local systems implies that it only acts on
those systems and acts trivially on the rest of the systems.
For example, XAB acting on the composite system ABC is a
shorthand expression of XAB ⊗ 1C . We will frequently use the
von Neumann entropy of quantum state ρ defined as S(ρ) :=
−Tr[ρ log2 ρ]. When the notation such as S(A)ρ is used, it
represents the von Neumann entropy of the marginal state
ρA of the multipartite state ρABC..., i.e., S(A)ρ = S(ρA). These
two notations will be used interchangeably. Similarly Shan-
non entropy H (p) := −∑

i pi log2 pi and Rényi entropy [7],
Hα (p) = 1

1−α
log2

∑
i pα

i are defined for probability distribu-
tions {pi}. A quantum channel, or a quantum map, is a linear
map on a operator space that that is completely positive and
trace preserving. A unital quantum map is a quantum map
that preserves the maximally mixed state. We will denote the
dimension of the Hilbert space associated with system S as
dS from now on, with the exception that the dimension of the
Hilbert space associated with the input state ρ being denoted
as just d . A dA ⊗ dB-dimensional Hilbert space stands for the
tensor product of dA-dimensional and dB-dimensional Hilbert
spaces.

III. MAIN RESULT

A. Catalytic randomness

What does using randomness mean, and how is it different
from using other quantum resources? We intuitively know that
a mixed quantum state has some randomness in it, but how
is interacting with a quantum system prepared in a mixed
state different from using only randomness of that system,
not other physical properties? To precisely understand the
meaning of randomness usage, we take an approach similar
to that of resource theory for other quantum resources such as
entanglement and coherence. To characterize a resource, we
must define a situation where the resource is not present [8].

Assume that there exists a deterministic agent A who can-
not generate randomness by oneself. Although the meaning of

FIG. 1. What do we mean by “using randomness”? We can im-
plement various tasks using a randomness source, but if we leave an
irreversible effect on the source, then it is natural to think that some
physical resources other than randomness were consumed in the pro-
cess. Therefore, we accept the definition that “using randomness is
extracting entropy by interacting with a mixed state without leaving
detectable probabilistic effects on it.”

the term “randomness” may be vague at this point, at least we
can say that, in quantum mechanics, having no power to gen-
erate randomness means the only actions one can take aside
from appending auxiliary systems initialized in a pure state
are unitary operations. An example of such an agent is the one
in a closed system whose time evolution is governed by the
Schrödinger equation, for which the time evolution is given
as a unitary operator, which does not alter the entropy and,
moreover, the spectrum of the quantum state of the system.

Now, we want to provide A with a source of randomness.
A typical source of randomness is a random number table.
However, giving an agent a random number table and letting
them do whatever they want with the table may lead to the
consumption of some physical resource in the table other than
randomness. For example, if we do not forbid one from leav-
ing marks on the table or from tearing the pages of the table to
make an origami (see Fig. 1), then it is hard to say that we are
allowing randomness utilization only. Another key observa-
tion we can make is that a randomness source learns nothing;
a one-time pad learns nothing about the message encrypted
with it, and a dice rolled does not have any information about
the status of the game utilizing it.

Therefore, a plausible criterion for characterizing pure ran-
domness usage would be that, after an interaction between a
user and a randomness source, the next user who is indepen-
dent of the first user must be able to use the randomness source
and detect no trace of the first user. It does not mean that every
process involving randomness should leave the randomness
source intact; it means that if the process utilized only ran-
domness, then it must be also possible to implement the same
process without altering the statistical state of the randomness
source. If it is impossible to deterministically revert the effect
made by the first user, then we can interpret it as that some
other physical resource has been consumed in the process. As
a matter of fact, sometimes it is fundamentally impossible to
affect the randomness source. For example, after one person
of a group of people uses some event that is unknown to all
of them, say, “Whether it rained in London on November 21,
1902,” as a source of randomness to implement some task, the
probability of the event would stay the same for all the other
people.

So far the randomness sources discussed above were all
classical, but one could try to characterize randomness within

043089-2



CATALYTIC QUANTUM RANDOMNESS AS A … PHYSICAL REVIEW RESEARCH 3, 043089 (2021)

FIG. 2. Schematic depiction of catalysis process. Catalyst σ is
used to implement the quantum map ρ �→ �(ρ ). The catalyst stays
in its original form σ as the marginal state of the global state
U (ρ ⊗ σ )U † called the intermediate, after the interaction, regardless
of the input state ρ. The blue dotted line depicts the correlation
formed between the system and the catalyst, which indicates that the
free randomness in the catalyst is used during the process.

a quantum system in a similar way. It turns out that random-
ness utilization of this sort fits with the framework of catalysis
in quantum resource theories [1,9], the meaning of which is as
follows. Suppose that A is allowed to borrow a system B called
catalyst in the quantum state σB to implement a quantum map
�. A is allowed to interact with B but should return the system
B in its original state σB after every interaction. This can
be summarized as the following two conditions (see Fig. 2).
When a bipartite unitary U on systems A and B is used to
implement a quantum map ρ �→ �(ρ) with a catalyst σ for
arbitrary possible input state ρ, i.e.,

TrBU (ρA ⊗ σB)U † = �(ρ), ∀ρ. (1)

The catalyst σ should retain its original randomness, i.e.,
spectrum, after the interaction regardless of the input state ρ,
i.e.,

TrAU (ρA ⊗ σB)U † = V σBV †, ∀ρ, (2)

with some unitary operator V on the system B. Although
the catalyst changes by some unitary operator V , any unitary
operator can be reverted by a deterministic agent and it is
intuitive that randomness of quantum state only depends on
its spectrum, so we accept this definition. We remark that the
requirement Eq. (2) is not actually requiring the state σB to be
used indefinitely by a single user, as we will see in Sec. III E
catalysts have correlational resource that can be depleted
through randomness extraction, even though one cannot detect
its effect locally.

We will call the bipartite interaction described in Eqs. (1)
and (2) a catalysis or a catalysis process and a quantum map
that can be implemented by catalysis a catalytic quantum map
or channel. For example, the quantum map � in Eq. (1) is
catalytic. We will call the bipartite unitary operator used for
catalysis a catalysis unitary operator.

We will say that U is compatible with σ if Eq. (2) holds
with V = I and vice versa. Using an incompatible catalyst for
a given catalysis unitary operator will lead to change of the
catalyst after the interaction. For the sake of convenience, we
will often use the definition of the compatibility for the cases
where σB is an unnormalized Hermitian operator, too. Similar
randomness-utilizing processes were considered in previous

works, under the name noisy operations [10–12] or thermal
operations. However, most studies were focused on the imple-
mentation of the transition between two fixed quantum states
and the existence of a feasible catalyst for that task. Here, we
are more interested in the implementation of quantum map,
independently of potential input state, with a given catalyst.
However, later we will see that this characterization is also
relevant to state transitions, too (see Sec. IV E).

One might think that it is enough to require that no infor-
mation should be leaked to the source of randomness or no
change of spectrum of the state of randomness source should
happen is enough. From that perspective, the condition Eq. (2)
may look too strong, but actually it is equivalent to apparently
weaker conditions. We refine the result of Ref. [9] to get
the following equivalent conditions. All the omitted proofs of
results can be found in the Appendix.

Proposition 1. For any bipartite unitary operator U on
a composite system AB, the following requirements are
equivalent:

(i) TrAU (ρA ⊗ σB)U † = V σBV †, ∀ρ,

with some unitary operator V on B.

(ii) TrAU (ρA ⊗ σB)U † = WρσBW †
ρ , ∀ρ,

with some unitary operator Wρ on B depending on ρ.

(iii) TrAU (ρA ⊗ σB)U † = ξB, ∀ρ,

for some quantum state ξB on B independent of ρA.

(iv) TrAUAB(ψRA ⊗ σB)U †
AB = ψR ⊗ ξB,

for some full-rank quantum state ψR on quantum system R
having the same dimension with A and its purification ψRA

and some quantum state ξB on B.
In quantum thermodynamics, interaction between a system

and a thermal bath is often modeled with a energy-preserving
bipartite unitary operator [13]. Although it is hard to dis-
tinguish work and heat in quantum thermodynamics, one of
widely accepted definition of heat is the energy exchange
accompanied by changing the spectrum of the heat bath [14].
From this point of view, condition (ii) states that, when con-
sidering B as a thermal bath, the process is adiabatic in the
sense that the bath undergoes no change of entropy.

Requirement (iii) gives a characterization that catalytic
quantum map is a quantum map that can be implemented
without leaking any information of input state to the ancillary
system. Forbidding information leakage is important in the
context of cryptography, therefore it means that the catalysis
of randomness can be applied to implement protocols that
require security such as private state transfer [4]. These obser-
vations put catalysis of quantum randomness in the context of
various research topics including quantum thermodynamics,
private quantum decoupling [15] and quantum secret shar-
ing [16–18].

Because of Proposition 1, for every catalysis with the
catalysis unitary operator U , we have corresponding unitary
operator V on B in Eq. (2). We can consider a new catalysis
unitary operator (1A ⊗ V †

B )U that completely preserves its
catalyst, e.g., σ → σ while implementing the same quantum
channel. We will call such a form of a catalysis unitary opera-
tor its canonical form.
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As it is evident from Eqs. (1) and (2), catalysis of ran-
domness inevitably forms correlation between the system and
the randomness source, thus hinders the immediate reuse
of the catalyst. However, this phenomenon is neither patho-
logical nor unprecedented in the study of catalysis for the
following reasons. First, a catalyst being unable to function
properly with an outcome of the catalysis is not unnatu-
ral even in the original context of chemistry. For example,
if a catalyst C catalyzes the reaction that turns compound
X into Y , then it is trivial that C no longer has catalytic
value in the interaction with Y ; yet C can still function as
a catalyst with another batch of X . Second, depletability
of randomness is also natural considering how randomness
sources behave in everyday sense. One-time pads are valu-
able sources of randomness in cryptography and they act
as a catalyst because their probability distribution does not
change after the encryption using them, nevertheless it is
impossible for a single agent to reuse the same one-time pad.
Still, it is possible that the same one-time pad can be reused
by agents who are completely independent of the original
user and the relevant participants. Finally, catalyst function-
ing while forming correlation with systems has been actively
studied recently in the field of quantum thermodynamics and
other quantum resource theories [1–6,11,13,19–25]. All of
theses observations call for the extension of the meaning
of “catalysis” and motivate an analysis of consumption of
“catalytic power” by forming correlation with a catalyst. In
other words, a resource theory of catalytic randomness is
required.

We remark that a deterministic agent cannot implement
irreversible measurements on a quantum system. Thus, “quan-
tum randomness” discussed in this work is different from the
randomness generated by measuring a quantum system [26],
as measurement outcomes are classical randomness, in a
sense, once they are recorded on a classical medium, after all.
The framework of this work is more concerned about utilizing
randomness within a classical/quantum system independently
of the origin of the randomness. We aim to explore the na-
ture of pure randomness utilization in classical and quantum
regime, and leave the study of true nature and origin of ran-
domness in respective framework to be discussed elsewhere
(consult Ref. [26] for more information on randomness in
classical and quantum mechanics).

To develop a resource theoretical approach to catalytic
randomness, we first need to identify the “standard currency”
of the given resource. For example, in the resource theory of
entanglement, a maximally entangled state is universal in the
sense in can be used to perform almost every useful task that
can be done with an entangled state. A natural candidate of
such a standard unit of randomness is a maximally mixed
state. Therefore, we first show that every catalysis unitary
operator is compatible with the maximally mixed states. It
means that for arbitrary catalysis, even when one replaces
the catalyst with the maximally mixed state, it will still be
a catalysis.

Proposition 2. A catalysis unitary operator U is compat-
ible with a catalyst σ if and only if [U,1 ⊗ σ ] = 0. Thus,
U is compatible with the projection onto each eigenspace of
σ . Furthermore, every catalysis unitary operator is compatible
with the maximally mixed catalyst.

Proposition 2 shows that any catalytic map � imple-
mented with a catalysis unitary operator U on HA ⊗ HB

with a catalyst σB with the spectral decomposition σ =∑
i λi	i (	i	 j = δi j	i ) can be decomposed into subcatal-

yses. To be more precise, if Hi is the support of 	i, then
one can decompose the Hilbert space HB = ⊕

i Hi and the
catalysis unitary operator U = ⊕

i Ui where Ui is defined on
HA ⊗ Hi. Let ri = Tr	i and πi = r−1

i 	i. Then, we get that
� is a convex sum of other catalytic maps that uses a max-
imally mixed state as its catalyst, i.e., � = ∑

i λiri�i where
�i(ρ) = TrHiUi(ρA ⊗ πi )U

†
i .

The unital maps that can be implemented with a finite di-
mensional quantum system prepared in the maximally mixed
state as its ancillary system are known as the exactly fac-
torizable maps [27,28], which is in turn a special case of
more general factorizable maps, whose ancillary systems can
be represented with a (possibly infinite dimensional) von
Neumann algebra. The catalytic maps �i defined above are
therefore factorizable maps, but, since the set of factorizable
maps is known to be convex, we can see that arbitrary catalytic
map is also factorizable. However, since there are nonfactor-
izable unital maps [28], we get the following results.

Theorem 3. Not every unital map is catalytic.
Theorem 3 solves an open problem introduced in Ref. [9],

which asked the exact inclusion relation of the set of unital
maps and the set of catalytic maps. In light of Proposition 1,
it follows that there is a unital quantum map that must leak
some information of the input system to whatever system
coupled with the input system to implement the quantum map.
This result is rather surprising, because even the depolarizing
map, which completely deletes the information of input state,
can be implemented without leaking any information to an
ancillary system.

Using Proposition 2, we can also completely characterize
the class of catalysis unitary operators.

Theorem 4. A bipartite unitary operator U on two systems
A and B is a catalysis unitary operator if and only if its partial
transpose U TA is also a unitary operator.

The class of bipartite unitary operators with unitary par-
tial transpose was previously known as the bipartite unitary
operators that induce unital maps regardless of ancillary
state [29,30]. Theorem 4 adds an operational meaning to those
bipartite unitary operators and we can see that only unital
maps can be implemented through catalysis. We remark that,
however, this characterization of catalysis unitary operator
only applies to the case of implementation of quantum maps,
not to the state transition between two specific quantum states.

On the Hilbert space associated a bipartite system, e.g.,
HA ⊗ HB, we define the swapping operator F := ∑

i j |i〉〈 j| ⊗
| j〉〈i|. We remark that the partial transposes of U † and FUF
are also unitary operators. Therefore, it follows that a catalysis
unitary operator U ’s inverse U † and party-swapped version
FUF are also catalysis unitary operators.

Examining if a randomness source is compatible with a
given catalysis unitary operator is seemingly complicated, but
we show that actually there is an easy method of examining
the compatibility. One need not examine the invariance of the
randomness source for every input as it is enough to check the
case of the maximally mixed input.
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Proposition 5. A randomness source σ is compatible with
a catalysis unitary operator U if and only if its von Neumann
entropy is preserved for the maximally mixed input state, i.e.,

S
[
TrAU

(1A

d
⊗ σB

)
U †

]
= S(σB). (3)

A special class of catalyses is classical catalysis [1,9]. In
classical catalysis, the catalysis unitary operator is a controlled
unitary operator which is conditioning on the eigenbasis of the
catalyst. It is classical in the sense that the process “measures”
the random variable of the catalyst classically and implements
a deterministic process according to that random variable. In
other words, a classical catalysis is a random unitary oper-
ation {UX }, i.e., ρ �→ ∑

x pxUxρU †
x , with the corresponding

probability distribution px = Pr(X = x).
In previous studies, advantages of quantum catalysts

over classical catalysts have been discovered multiple
times [1,3,9]. Now that we have an easy-to-check criterion,
Theorem 4, for catalysis unitary operators, we could find
another specific functionality of quantum catalyst in the max-
imally mixed state. A quantum catalyst in the d-dimensional
maximally mixed state can be used to implement a random
unitary operation {UX } followed by another random uni-
tary operation {VY }, where Pr(X = x) = Pr(Y = y) = 1

d and
[Ux,Vy] = 0 for all x and y, and the conditional probability
matrix Pr(Y = y|X = x) is unistochastic. The implementation
is simple; it suffices to just apply a local unitary operator to the
catalyst between two controlled unitary operators implement-
ing {Ux} and {Vy}, respectively.

Note that a unistochastic matrix is a doubly stochastic
matrix which is the Schur square (component-wise square
of absolute value) of a unitary matrix. A special class of
unistochastic matrices is the family of stochastic matrices with
uniform components. Such matrix is the Schur square of the
discrete Fourier transform unitary matrix F = (Fnm), whose
components are given as Fnm = 1√

d
exp(i2πnm/d ).

Corollary 6. A quantum catalyst in the d-dimensional
maximally mixed state can be used to implement arbitrary two
independent consecutive mutually commuting rank-d random
unitary operations.

Corollary 6 generalizes the results of Ref. [1], where it
was claimed that a maximally mixed state performs twice
as efficient when it comes to catalytic implementation of
dephasing maps, and Refs. [5,9], where the same efficiency
doubling effect was shown for depolarizing maps. Corollary 6
says that a quantum catalyst in the maximally mixed state
can implement two independent random unitary operations
consisting of mutually commuting unitary operators each of
which require a classical catalyst of the same size, thus it
strengthens the qualitative statement “quantum randomness is
twice as strong as classical randomness.” It is still unclear,
however, if a classical catalyst of double the size of a quantum
catalyst can perform every task that the latter can. We leave it
for the future research topics.

B. Mutual information as extracted randomness

Catalysis of quantum randomness [1,3,5] was made pos-
sible by explicitly treating randomness sources as a quantum
system. On the other hand, we observed that randomness is

FIG. 3. Schematic depiction of generalized catalysis process.
Catalyst σB initially correlated with system A2 in the bipartite state
σA2B is used to implement a quantum map ρ �→ �(ρ ). The catalyst
stays in its original form σB as the marginal state of the global state
τA1A2B = U (ρA1 ⊗ σA2B )U † called the output intermediate, after the
interaction, regardless of the input state ρ. The boxes enclosing local
systems depict the correlation formed between the systems.

consumed by building up correlation with the source of it.
Therefore, we will generalize the explicit approach by explic-
itly treating the correlation with the randomness source as a
bipartite quantum state.

A resource theory should be able to describe a situation
where a resourceful state that is already partially used is
utilized. In Eqs. (1) and (2), only randomness sources that are
not used at all were considered, i.e., only catalysts prepared in
a product state were considered, but in general there could be
randomness sources that have formed some correlation with
the system through the previous interactions. To encompass
such situations, we generalize the definition of catalysis of
randomness.

Suppose again that an agent A is allowed to use a system B
called catalyst in the quantum state σB. A is allowed to interact
with B but the system B should stay in its original state σB after
every interaction. However, assume that a catalyst σB has been
transformed into a bipartite state σA2B through the previous
interaction with the system. We will call such a bipartite state
σA2B the intermediate, coined from the name of the molecules
temporarily formed in chemical catalysis, and its marginal
state σB the catalyst (see Fig. 3). Now, suppose that A is trying
to implement a quantum map � for a (possibly unknown) new
input state ρ with some tripartite unitary operator U on A1A2B
in the following manner,

TrBU (ρA1 ⊗ σA2B)U † = �(ρ)A1 ⊗ σA2 , ∀ρ. (4)

Note that σA2 is required to retain its form. This is equivalent to
requiring that a newer randomness extraction should not affect
the result of the previous randomness extraction. In addition
to this, we require the catalysis constraint that σB should be
left unchanged, i.e.,

TrAU (ρA1 ⊗ σA2B)U † = σB, ∀ρ. (5)

Here, both systems A1 and A2 are collectively denoted as A.
We let τA1A2B := U (ρA1 ⊗ σA2B)U † and we will refer to this
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state as the output intermediate of the process. When this is
done, we will say that � is implemented catalytically with
the intermediate σA2B and call U as the generalized catalysis
unitary operator. The following result shows that the mutual
information of intermediate quantifies the amount of random-
ness already extracted from a catalyst.

Theorem 7. The mutual information of the intermediate
changes by the entropy production by the implemented quan-
tum map, i.e., I (A1A2 : B)τ − I (A2 : B)σ = S[�(ρ)] − S(ρ).

Proof. We have

I (A1A2 : B)τ = S(A1A2)τ + S(B)τ − S(A1A2B)τ .

Since S(A1A2)τ = S[�(ρ)] + S(σA2 ), S(B)τ = S(σB), and
S(A1A2B)τ = S(ρ) + S(σA2B) from the fact that unitary oper-
ators preserve the von Neumann entropy, we have

I (A1A2 : B)τ = S[�(ρ)] − S(ρ) + I (A2 : B)σ , (6)

from which the desired result follows. �
We remark that Theorem 7 opens up an unexplored ap-

plication of randomness sources, namely their usage as a
randomness absorbent. If the intermediate was initially given
as a highly correlated state, then the source can be used to
implement entropy-decreasing maps by decreasing the mu-
tual information of the intermediate. This aspect of quantum
catalyst will be discussed in Sec. IV A. Hence, we can see
that randomness can be both deposited into and withdrawn
from the intermediate and the mutual information between the
system and a catalyst quantifies the amount of randomness
measured in the von Neumann entropy extracted from the
catalyst.

However, note that the premise of the implementation of
entropy-decreasing maps is rather different from that consid-
ered in Sec. III A; it requires the intermediate to be correlated
in a known form. It can happen when the state transition be-
tween two quantum states with known forms is implemented.
Such a situation does not happen if the whole process has
started from an uncorrelated catalyst and only accepts un-
known input states (see Sec. IV E).

We remark that consecutive implementation of quantum
maps (say) �1,�2, . . . is actually equivalent to a single
implementation of the tensor product of the aforementioned
quantum maps, i.e., �1 ⊗ �2 ⊗ . . . . Therefore, for that case,
we can always assume that every intermediate σAB has the
form σAB = W (ρA ⊗ σB)W † for some catalysis unitary op-
erator W . It implies that one does not have to consider the
generalized catalysis process when one implements only cat-
alytic maps with an initially uncorrelated catalyst. Hence,
unless otherwise mentioned, we will only consider catalytic
processes, not generalized catalytic processes, in the follow-
ing sections. It leaves the characterization of catalysis with
arbitrarily correlated catalysts as an open problem.

On the other hand, since a unital quantum map never de-
creases the entropy of its input state, i.e., S[�(ρ)] − S(ρ) � 0
for all ρ, implementing a unital map only increases the mutual
information of the intermediate. Unital maps are important
since the class of unital maps coincides with the class of
quantum maps that never decreases the entropy of its input
state and since every catalytic map is unital [9].

An interesting observation can be made. The “Rényi mu-
tual information” Iα (A : B) := Sα (A) + Sα (B) − Sα (AB) for

α � 0 formally generalized from the von Neumann mu-
tual information has a defect that it can be negative when
α 	= 1 despite its property of vanishing for independent sys-
tems. However, for any intermediate generated from catalysis
initially prepared in a product state, the Rényi mutual informa-
tion is always positive, and they are the same with the Rényi
entropy catalytically extracted from the catalyst. Especially it
vanishes only when the intermediate is a product state, i.e.,
no randomness is extracted. Therefore, we can conclude that
the Rényi mutual information is a valid measure of extracted
randomness in the context of catalytic quantum randomness.

We remark that by implementing a quantum map �, si-
multaneously one also implements a multipartite quantum
map I ⊗ �, where I is the identity map on the systems
that are not actively interacted with. We will call S(�) :=
maxρ{S[�(ρ)] − S(ρ)} the maximal local entropy production
of � and SG(�) := maxρ{S[(I ⊗ �)(ρ)] − S(ρ)} the maxi-
mal global entropy production of �. We similarly define their
Rényi entropy counterparts, Sα (�) and SG

α (�), in a similar
way. Note that SG

α � Sα (see Sec. IV A).
The maximal entropy production always can be achieved

with a pure state input. This can be shown from noting that
for a general bipartite input state ρAB, there exists a purify-
ing system E so that ρABE is a pure state and the entropy
production by �A is given by S(AB)τ − S(E )τ where τABE =
(�A ⊗ IBE )(ρABE ). By using the Araki-Lieb inequality [31],
we get S(AB)τ − S(E )τ � S(ABE )τ where S(ABE )τ can be
also interpreted as the entropy production by �A for the bi-
partite pure state input ρABE .

For example, for the dephasing map D with respect
to the computational basis, by choosing a pure state ρ =
|+〉〈+| with |+〉 = 1√

d

∑
i |i〉, we have D(|+〉〈+|) = 1

d 1,
thus the maximal entropy production is achieved, i.e.,
S(D(|+〉〈+|)) − S(|+〉〈+|)| = log2 d . For the depolarizing
map E (ρ) := 1

d 1, by choosing � = I ⊗ E and the input
state ρ = |〉〈| with an arbitrary maximally entangled state
|〉 (e.g., |〉 = 1√

d

∑
i |ii〉), we get S((I ⊗ D)(|〉〈|)) −

S(|〉〈|)| = 2 log2 d .

C. Catalytic entropies

In the previous section, we showed that the mutual in-
formation measures the amount of randomness catalytically
extracted from a catalyst. A naturally following question is
how to measure the maximum amount of randomness that
can be catalytically extracted from a catalyst. In this section,
we completely characterize the amount of entropy extractable
from an arbitrary quantum catalyst. By the eigenspace decom-
position of a quantum state σ we mean the decomposition of
the form σ = ∑

i λi	i with {λi} being the eigenvalues of σ

and 	i being the orthogonal projector onto the eigenspace
corresponding to λi such that 	i	 j = 0 if λi 	= λ j . It was
shown in Ref. [9] that uniformness or degeneracy of eigen-
values of a quantum state boosts its capability as a catalytic
randomness source. It motivates us to define the average de-
generacy �(σ ) of quantum state σ counted in bits as �(σ ) :=∑

i λiri log2 ri. For example, �(σ ) is zero for a nondegenerate
σ and �(σ ) achieves its maximal value, S(σ ), when σ is
completely uniform.
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FIG. 4. Spectrums of two density matrices. Each probability
pi contributes to the catalytic entropy by −pi log2 pi, however, if
there is degeneracy, then the same contributes by the double, i.e.,
−2pi log2 pi. Although their von Neumann entropies are very close,
i.e.|S(σ1) − S(σ2)| < 0.004, their catalytic entropies differ by almost
1 bit.

In the following theorem, we show that, in addition to the
von Neumann entropy of the catalyst, the average degeneracy
acts as the bonus extractable entropy of the catalyst.

Theorem 8. For arbitrary randomness source σ with the
eigenspace decomposition σ = ∑

i λi	i, the maximal en-
tropy production from σ is S(σ ) + �(σ ).

Note that the maximal extractable von Neumann entropy
of a quantum state σ with the eigenspace decomposition σ =∑

i λi	i, S(σ ) + �(σ ) can be we written as

S
(σ ) := −
∑

i

λiri log2(λi/ri ), (7)

which we will call the catalytic (von Neumann) entropy of
the catalyst σ (see Fig. 4). This is the average of quanti-
ties − log2(λi/ri ), which can be interpreted as the “catalytic
power” of each block 	i in the catalyst σ . This type of relation
between the degeneracy and the entropy of quantum state
can be extended to the min-entropy. Its natural min-entropy
generalization would be

S

min (σ ) := − max

i
log2(λi/ri ), (8)

which we will call the catalytic min-entropy of σ . We remark
that the min-entropy cannot exceed the catalytic min-entropy.
Also, just as ordinary quantum Rényi entropies, we have the
order relation S


min � S
.
In the following Theorem, we will show that this catalytic

min-entropy is indeed the maximal min-entropy extractable
from a given catalyst.

Theorem 9. For arbitrary randomness source σ , the max-
imal extractable min-entropy from σ is the catalytic min-
entropy of σ , S


min (σ ).
In a similar way, we can define the catalytic Rényi entropy

S

α for every α ∈ (0, 1) ∪ (1,∞) as

S

α (σ ) := 1

1 − α
log2

∑
i

λα
i r2−α

i . (9)

Similar to the catalytic min-entropy, we can also define the
catalytic max-entropy S


max (σ ) := log2

∑
i:λi>0 r2

i . Then,we
have the order relation S


min � S

α � S


β � S

max for 0 < β <

α. Like the both previously defined catalytic entropies,
catalytic Rényi entropy also characterizes the maximally ex-
tractable Rényi entropy with the corresponding α.

Theorem 10. For arbitrary randomness source σ , the max-
imal extractable Rényi entropy from σ is the catalytic Rényi
entropy of σ , S


α (σ ).
Since limα→1 S


α = S
 and limα→∞ S

α = S


min , Theo-
rem 10 subsumes Theorems 8 and 9, but we gave different
proofs using properties specific for each entropic quantity.

For any mixed state with the spectral decomposition σ =∑
i λi	i with ri = Tr	i, we will call the vector (r1, · · · , rn)

the degeneracy vector of σ . Let ‖r‖2 :=
√

r2
1 + · · · + r2

n and
let t = (ti) be the probability distribution formed by normaliz-
ing the squared degeneracy vector r, i.e., ti := ‖r‖−2

2 r2
i . Then,

we have the following expression with simple substitution for
the catalytic Rényi entropy of σ in terms of Rényi divergence:

S

α (σ ) = 2 log2 ‖r‖2 − Dα (λiri ‖ ti ). (10)

Here, Dα (p‖q) := 1
α−1 log2

∑
i pα

i q1−α
i is the Rényi diver-

gence [32] between two probability distributions p = (pi ) and
q = (qi ), which is nonnegative and is zero if and only if p = q.
From this expression we get that the maximal catalytic Rényi
entropy can be achieved when λi = ‖r‖−2

2 ri.
Corollary 11. For a catalysis with degeneracy vector

r = (r1, · · · , rn), the maximal catalytic Rényi entropy is
2 log2 ‖r‖2.

In previous works, it was shown that quantum maps
that destroy more information require more randomness re-
sources [5,9]. We show here that the same relation holds for
the catalytic Rényi entropies.

Corollary 12. For a d-dimensional catalytic map � with
the entanglement-assisted classical capacity CEA(�) utilizing
a catalyst σ , the following inequality holds:

2 log2 d − CEA(�) � S

min (σ ). (11)

D. Catalysis under superselection rule

From the proof structure of the previous results, the relation
between the degeneracy and the entropy of catalyst follows
from the relation between the decomposability of the given
catalysis into subcatalyses and the entropy of catalyst. For ex-
ample, every classical catalyst can be decomposed into rank-1
catalysts, therefore requires more entropy to implement the
same quantum map.

To be more precise, even when we decompose a given
catalyst σ more finely so that its eigenspace decomposition
σ = ∑

i λi	i need not have distinct eigenvalues for different
i’s, but still different 1

ri
	i are required to be orthogonal to

each other and to be compatible catalysts themselves for the
same catalysis unitary operator, Theorems 8–10 still hold. For
instance, even when a catalyst is maximally degenerate, i.e.,
σ = 1

d

∑
i |i〉〈i|, if each projector |i〉〈i| is preserved when used

instead of σ itself for the same catalysis process, then ri = 1
for every i so that Sα (σ ) = S


α (σ ). We will still call the new
(r1, · · · , rn) following the constraint the degeneracy vector of
σ .

There are indeed situations in which there are limits on the
level of degeneracy without complete specification of the form
of catalysis. In a general formulation of quantum mechanics,
the space spanned by the density matrices of a quantum sys-
tem need not be a full matrix algebra M(H) on some Hilbert
space H, but they are in general a C∗-algebra [28,33]. A finite

043089-7



SEOK HYUNG LIE AND HYUNSEOK JEONG PHYSICAL REVIEW RESEARCH 3, 043089 (2021)

dimension C∗-algebra is isomorphic to a direct sum of full
matrix algebras (the Artin-Wedderburn theorem) [34,35]. It
is equivalent to imposing a superselection rule that forbids
superposition between a certain set of subspaces called the su-
perselection sectors of the underlying Hilbert space [36]. It is
sometimes said that an observable that has the superselection
sectors as its eigenspaces is off-shell conserved [37] or super-
conserved [38] in the system. The tuple of the dimensions of
Hilbert spaces on which the direct summands of a C∗-algebra
are full matrix algebras is called the dimension vector of the
C∗-algebra. For example, if a C∗-algebra C is isomorphic to⊕n

i=1 M(Cdi ), then the dimension vector of C is (d1, · · · , dn).
Note that, for any catalyst σ with degeneracy

vector r = (r1, · · · , rm) in a C∗-algebra with dimen-
sion vector d = (d1, · · · , dn), there exists a partition
f : {1, · · · , m} → {1, · · · , n} such that

∑
i: f (i)= j ri = d j

for every j ∈ {1, · · · , n}. Thus, if di = 1 for all i, then ri = 1
is forced; hence, we say that the catalyst is classical in that
case, regardless of the multiplicities of its eigenvalues.

Note that ‖r‖2 � ‖d‖2 since
∑n

j=1

∑
i: f (i)= j r2

i �∑n
j=1(

∑
i: f (i)= j ri )2. Therefore, the catalyst achieving the

maximal catalytic entropies, according to Corollary 11,
has the same catalytic entropies with the maximally
mixed quantum catalyst with rank ‖d‖2. Therefore, one
can interpret that ‖d‖2 is the effective dimension of a
quantum catalyst under the restriction that degeneracy vector
should be d. Moreover, it is indeed possible to implement
‖d‖2

2-dimensional dephasing map.
Theorem 13. With a quantum catalyst σ in a C∗-algebra

with dimension vector d, the maximal dimension of a quan-
tum system that can be catalytically dephased with σ is ‖d‖2

2.
These observations show that the notions “the maximally

mixed state” and “the state providing maximal entropy” are
no longer identical under the superselection rule. For example,
for an electron in atom whose azimuthal quantum number is
l and magnetic quantum number m with restriction l � lM ,
if there is a superselection rule that forbids the superposition
between states with different azimuthal quantum numbers,
then the state that exhibits the maximal catalytic entropy is
not the maximally mixed state

1

(lM + 1)2

lM∑
l=0

l∑
m=−l

|l, m〉〈l, m|, (12)

but the state with the specific mixing probability

lM∑
l=0

3(2l + 1)

(lM + 1)(2lM + 1)(2lM + 3)

l∑
m=−l

|l, m〉〈l, m|, (13)

whose catalytic entropy is log2[(lM + 1)(2lM + 1)(2lM +
3)/3]. For the case where the catalyst is a thermal state, i.e.,
σ = e−βH/Z with some Hamiltonian H , the energy levels {Ei}
should have the form Ei = E∞ − 2 log2 ri with some constant
energy cap E∞.

E. Depletion of catalyst

In this section, we will show that a randomness source can
be actually depleted. Suppose that, for a given catalyst σ , the
maximal entropy production of a unital map �1 is already

FIG. 5. Schematic depiction of depletion of randomness. When
the sum of maximum entropy productions of two catalytic maps ex-
ceeds the catalytic entropy of the catalyst, their joint implementation
is bound to create the correlation between the outputs of two catalytic
maps, even when the input systems were prepared in a product state.
As a result, two catalytic maps cannot be implemented in parallel.

S
(σ ), i.e., S(1) = S
(1). Can we catalytically implement
another unital map 2 after implementing 1, or in other
words, can we implement 1 ⊗ 2, with the catalyst σ? We
answer this question negatively by proving the following re-
sult (see Fig. 5).

Theorem 14. Consider catalysis processes with the cata-
lyst σB and let 1 and 2 be unital maps acting on A1 and
A2, respectively. For arbitrary catalytical implementation of a
quantum map  on A1A2 utilizing σB such that TrA2 ◦  = 1

and TrA1 ◦  = 2, for every α � 0 we have maxρ1,ρ2 Iα (A1 :
A2)(ρ1⊗ρ2 ) � Sα (1) + Sα (2) − S


α (σ ).
Here, Iα is the Rényi mutual information discussed in

Sec. III B. We remark that although there are systems with the
labels A1 and A2 in Theorem 14, the catalysis in Theorem 14
is not the generalized catalysis introduced in Sec. III B, but
the original catalysis of Eqs. (1) and (2), where the system A
is simply partitioned into A1 and A2.

Theorem 14 implies that 1 ⊗ 2 cannot be implemented
catalytically if the sum of their maximal entropy produc-
tions exceeds the catalytic entropy of the catalysis since
1 ⊗ 2(ρ1 ⊗ ρ2) = 1(ρ2) ⊗ 2(ρ2) is a product state for
arbitrary ρ1 and ρ2 so its Rényi mutual entropy should be zero,
but Theorem 14 forbids it. By substituting i �→ I ⊗ i for
i = 1, 2 in Theorem 14, a useful Corollary follows.

Corollary 15. For a pair of unital maps 1 and 2 such
that SG

α (1) + SG
α (2) > S


α (σ ) for some α � 0, 1 ⊗ 2

cannot be implemented catalytically with the catalyst σ .
Corollary 15 explains why it is sometimes impossible to

reuse a classical catalyst even after extracting arbitrarily small
von Neumann entropy from it. Consider a d-dimensional
maximally mixed classical catalyst, whose catalytic Rényi
entropy is log2 d for every α. Assume that, using the catalyst,
we implemented a random unitary operation d−1 ∑d

i=1 Ui ·
U †

i with linearly independent unitary operators {Ui}d
i=1 such

that every unitary operator is arbitrarily close to each other,
e.g., ‖Ui − Uj‖1 < ε for arbitrarily small ε and every i
and j. The Rényi entropy production for every α > 0 by
this map can be made arbitrarily close to 0 as the ran-
dom unitary operation converges to the identity map with
vanishing ε and the continuity of the Rényi entropies for
α > 0. However, as long as {Ui}d

i=1 is linearly independent,
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the max-entropy production by this operation is always max-
imal, i.e., log2 d , for maximally entangled input states, thus
the catalytic max-entropy of the catalyst is depleted for every
ε > 0. Therefore, by Corollary 15, no additional catalytic map
with nontrivial entropy production can be implemented with
the catalyst.

IV. DISCUSSION

A. Randomness absorption of correlated catalyst

The extremal case of entropy-decreasing map is the initial-
ization map, which maps every input state to a single pure
state. An initialization map cannot be implemented with a
catalyst that is uncorrelated with the system; however, it is
possible with an initially correlated intermediate. The obser-
vation that the amount of randomness required to decouple
a correlated state effectively measures the correlation within
it was made in Ref. [39]. Catalytic utilization of correlated
intermediate can be understood as a converse task. Nonethe-
less, surprisingly, a more correlated intermediate is not always
more useful for catalytic implementation of initialization map.
In fact, a highly restrictive form is required as the following
Proposition shows.

Proposition 16. A d-dimensional quantum catalyst com-
patible for implementation of a d-dimensional initialization
map should be in the maximally mixed state and be part of an
intermediate with the mutual information log2 d .

One example of such an intermediate is, when d is an
odd number, a d-dimensional maximally correlated classi-
cal state σA′B = 1

d

∑d−1
i=0 |i〉〈i|A′ ⊗ |i〉〈i|B. Let the generalized

catalysis unitary operator U acting on AA′B be given as
U = ∑

i jk | j〉〈i ⊕ 2k|A ⊗ |i ⊕ j ⊕ k〉〈i|A′ ⊗ |k〉〈i ⊕ j|B. Here,
⊕ denotes the addition modulo d . Another extremal example
is, when d = m2 for some integer m, a pair of m-dimensional
maximally mixed states and a m-dimensional maximally
entangled pure state, i.e., 1

m1A1 ⊗ |〉〈|A2B2 ⊗ 1
m1B1 . The

generalized catalysis unitary operator consists of multiple
steps. First, assign an arbitrary bipartite structure to the input
system A and swap it with system A2B2. Next, mask the sys-
tem A2 by using B1 as a randomness source and similarly mask
the system B2 by using A1 as a randomness source. Examples
of masking unitaries are given in Ref. [3].

Proposition 16 suggests that entropy absorption of quan-
tum catalyst shows the dual behavior. Even if the entropy
is locally decreased by catalysis, when a reference system
with which the input system is correlated is introduced, the
entropy of the reference-input joint system can increase. We
will call this increase of entropy the global increase of entropy.
Therefore, an intermediate should not only have enough free
randomness but also enough room to absorb external random-
ness. This observation can be generalized to the following
Theorem.

Proposition 17. Any quantum map that locally decreases
entropy by �S should globally increase entropy by at least
�S.

This result shows that a maximally correlated intermediate
σAB, i.e., I (A : B)σ = 2S(B)σ , cannot be used for catalytical
implementation of any quantum map which causes entropy
change.

B. Secret-decoding map

The no-hiding theorem [40] can be restated as that the
complementary channel of an constant channel is an isometry.
In other words, if quantum information completely disappears
from a system, then it can be deterministically retrieved from
its purifications. However, it is possible to circumvent the
no-hiding theorem and hide the quantum information from
local parties if we allow the initial state of the ancillary system
to be mixed. Such a hiding process is equivalent to catalytic
implementation of constant channel.

Nevertheless, the following form of generalization of the
no-hiding theorem applies to this situation, too [3]. If the joint
system BC is in a pure state, then, when the whole quantum
state of the system A is encoded solely into the correlation of
the joint system AB (i.e., without altering the marginal state
of B), it can be deterministically retrieved from the correlation
of the joint system AC too. That is, it is impossible to hide a
quantum state into the correlation of only one pair of quantum
systems, since there is always another system the correlation
with which stores the hidden quantum state. It implies that
quantum information cannot be localized in the correlation of
a unique pair of quantum systems.

A further generalization of this result named the no-secret
theorem, which generalizes the complete information de-
struction to arbitrary degrading of quantum information, was
proved in Ref. [9]. We introduce its proof here for com-
pleteness. Assume that a quantum map � on system A is
implemented through a generalized randomness-utilizing pro-
cess, i.e., no information about the input state of � is leaked
to the ancillary system other than the information that the
map is implemented, with a unitary M acting on AB and
a randomness source σ in system B. σB transforms into τB

after the implementation, regardless of the input state. Let C
be a purification system σB, i.e., σBC is pure state such that
TrCσBC = σB. We input the part of a maximally entangled
state RA into � and similarly consider a purification τBC

of τB. The marginal state on RB is 1
d 1R ⊗ τB, whose another

purification is RA ⊗ τBC . Since every purification of the same
quantum state are unitarily similar on the purifying system, we
acquire the existence of unitary operator V acting on AC such
that VACMAB(RA ⊗ σBC )M†

ABV †
AC = RA ⊗ τBC .

Considering the Choi-Jamiołkowski isomorphism, we can
say that the information hidden between A and B by MAB can
be restored by the interaction between A and C, i.e., VAC . It
shows that not only the whole quantum state, but also any
kind of quantum information encoded into the correlation of
a pair of quantum systems must be able to be stored from an
interaction between another pair of quantum systems. Note
that the condition that no information should be leaked to a
local system throughout the process is crucial. A localized in-
formation, of course, cannot be restored from another system
unless it was copied beforehand.

Theorem 18 (the no-secret theorem [9]). There is no way
to unitarily confine partial or whole quantum information into
the correlation between a single pair of quantum systems with-
out letting the local parties access the encoded information.

The no-secret theorem can be understood as a quantum
generalization of the fact that any information encrypted with
a random variable X as a key can be decrypted with any
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random variable Y that is maximally correlated with X , i.e.,
I (X : Y ) = H (X ). A remarkable point is that the encryption
need not be perfect; Theorem 18 applies to any encryption
with arbitrary level of concealing.

Theorem 18, however, merely implies the existence of
the unitary operator that recovers the concealed quantum in-
formation. The characterization of catalysis unitary operator
given by Theorem 4 shows what that unitary operator is.
For a catalysis implemented with a catalysis unitary oper-
ator UAB, the corresponding recovery map for the system
AC is the partial transpose U TB

AC , since UABκA ⊗ σBCU †
AB =

U TB
ACκA ⊗ σBCU TB†

AC as UAB for any κA commutes with σB and
σBC = (

√
σB ⊗ 1C )|�〉〈�|BC (

√
σB ⊗ 1C ) for an unnormalized

maximally entangled state |�〉BC = ∑
i |i〉B|i〉C .

C. Advantage of explicit model

A notable example of the advantage of adopting the ex-
plicit model of correlation being evident is the case where
the intermediate σA2B is a classical-quantum state, i.e., σA2B =∑N

i=1 pi|i〉〈i|A2 ⊗ |ψi〉〈ψi|B with some probability distribution
{pi}. It is equivalent to the situation where a random pure state
|ψi〉 is generated but the agent A has the perfect knowledge of
B in the memory A2. When the correlation with randomness
source is treated implicitly, one may denote the state of the
randomness source B as a randomly chosen but pure state
|ψi〉〈ψi| with no randomness at all, i.e., S(|ψi〉〈ψi|) = 0. It
will render the randomness source useless even when it is used
quantum mechanically. However, if one adopts the explicit
model of correlation, then, for the case N = d and pi = 1

d
with |ψi〉 = |i〉, we can see that the randomness source still has
2S(B)σ − I (A2 : B)σ = log2 d bits of free randomness. One
can even destroy log2 d qubits of quantum information with
this randomness source.

D. Multiparty infinite catalysis

We have seen that a catalyst has a limited power as a
randomness source and once its randomness is depleted then
it cannot be used for randomization. Does it mean that if the
number of independent users of the same catalyst is finite,
then the number of usages of the catalyst is limited? In the
following, we introduce a counterexample to this hypothesis.

Suppose that there are two separated parties, A and B,
who wish to implement dephasing maps with respect to the
computational basis (i.e., {|i〉}) on d2-dimensional quantum
systems using a catalyst C in the state 1

d 1C using the method
given in [1]. For her first turn, A dephases a pure state that
is unbiased to the computational basis, say, |+〉 = 1

d

∑d2

i=1 |i〉.
It results in the complete depletion of the randomness of
the catalyst. After it, A hands over the catalyst to B and
B implements the same dephasing map upon the same, but
independently prepared state |+〉. Again, the catalyst becomes
exhausted for B. The total state of ABC, which we will call the
joint-intermediate, has the following form at this stage:

τABC = 1

d4

∑
i jkl

|i〉〈 j|A ⊗ |k〉〈l|B ⊗ (UkUiU
†
j U †

l )C, (14)

where {Ui} is a set of orthonormal unitary operators, i.e.,
TrUiU

†
j = dδi j . However, when B returns the catalyst back to

A, from the perspective of A, the catalyst looks “refuelled.” It
is because the marginal state on the system AC decoupled, i.e.,

τAC = 1

d3
1A ⊗ 1C . (15)

The same logic applies to A, too. Therefore, if they repeat this
process, then they can implement dephasing maps indefinitely
many times.

This initialization of randomness happens because the
complete depletion of randomness by B, i.e., I (B : C)τ =
2 log2 d leads to the complete decoupling of AC, because of
the information conservation law [5]. To be concrete, the fol-
lowing conservation law holds for any four-partite pure state
ξW XY Z ,

2S(Y )ξ = I (X : Y )ξ + I (Y : W Z )ξ . (16)

From the data-processing inequality [41] I (Y : W Z )ξ � I (Y :
Z )ξ , by ignoring W . It follows the inequality 2S(Y )ξ �
I (X : Y )ξ + I (Y : Z )ξ . We apply this inequality to the joint-
intermediate τABC with C being the catalyst. If B nearly
depletes the randomness, i.e., I (B : C)τ � 2S(C)τ − ε, then
the randomness for A is nearly perfectly restored, i.e., I (A :
C)τ � ε. Note that obviously multiple users become more and
more correlated as the usage of catalyst by them repeats.

The possibility of infinite catalysis with a finite number
of users is a stark difference between quantum and classical
catalyst. If C is a classical catalyst, then the upper bound
I (B : C)τ � S(C) forbids the monogamous argument that up-
per bounds the mutual information of I (A : C)τ . Indeed, as
any catalysis with a classical catalyst completely preserves
the each eigenstate of the catalyst, the usage of the catalyst
by other agents does not alter the intermediate of an agent at
all. An agent cannot use the same catalyst twice.

E. Catalytic implementation of state transition vs.
quantum map

Previous studies on catalytic quantum randomness mainly
focused on the transition between two specific quantum states
with a correspondingly prepared catalyst. On the contrary, our
main interest in this work is the implementation of quantum
maps with unspecified input states, not transitions between
two specific quantum states. The former approach is highly
effective for characterizing fundamental properties or the
conditions for state transition. For example, it was newly
discovered that the von Neumann entropy emerges among
the family of Rényi entropies as the only deciding factor if
the catalytic transition between two specific states is possible,
as the catalytic entropy conjecture, which was conjectured
in Ref. [2], was recently proved by Wilming [19] using the
technique introduced by Shiraishi and Sagawa [23].

The aforementioned technique is preparing a fine-tuned
catalyst that is highly dependent on the initial and final states
of the state transition in question. This setting, although it
saturates the ultimate limit, is rather contrived from the op-
erational perspective. It is because, since one needs different
catalyst for each input and output state pair, one requires an
enormous size of arsenal of catalysts for variable input and
output state pair, which can easily be infinite. One should not
need a different type of stove for cooking each dish; a tool
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must have a certain degree of versatility. If one assumes that
a catalyst is built whenever it is required, then one encoun-
ters a circular argument. How could one make a catalyst if
randomness is not free? Therefore, it is more natural to treat
a catalyst as a tool that takes resources to build and that one
needs to return in its original form after every use.

In this setting, one starts with a given catalyst and the
target map. Input states can be decided afterwards with the
capability of the catalyst in mind. This is the motivation of
studying the catalytic implementation of quantum maps, in-
stead of state transitions between specific states. In that case,
it is logical to assess the power of a given catalyst, which was
done in this work by finding the catalytic entropy of a given
catalyst.

Nevertheless, the characterization of randomness utiliza-
tion of this work can be applied to state transitions, too.
Following the argument of Sec. III A, we claim that a state
transition ρ → ρ ′ can be implemented by using randomness
only when it is possible to implement it without leaking infor-
mation to the ancillary system. What does it mean that there
is no information leakage when the initial state ρ is fixed?
For any mixed state, we can consider a reference system that
purifies the mixed state, and we say there is no information
leakage to the ancillary system if the reference system and
the ancillary system are independent after the state transition,
i.e., the mutual information between them remains vanished.
Consider how the channel capacity of a channel is quantified
by maximizing the mutual information between a reference
system that was initially maximally correlated with the input
system and the output system [42]. We will call this type of
state transition a randomness utilizing state transition.

Now, we make a technical assumption similar to that made
in Ref. [2], that ρ is full-rank. A justification is that, for any
quantum state, one can always find a full-rank quantum state
that is arbitrarily close to the quantum state, therefore its phys-
ical relevance is not significant. After making the assumption,
we can see that (iv) of Proposition 1 exactly describes this
randomness utilizing state transition, thus it implies the fol-
lowing result.

Theorem 19. A randomness utilizing state transition ρ →
ρ ′ with a full-rank quantum state ρ must be mediated by a
catalytic map.

One of the most symbolic examples of catalytic map that
is relevant to state transition is dephasing map. Dephasing
map was shown to be catalytically implementable [1] and
can be used for implementing state transition between two
arbitrary quantum state, e.g., ρ → ρ ′ with majorization rela-
tion ρ � ρ ′ by (quantum) Schur-Horn lemma [11,19,43,44].
However, it is till unknown if dephasing map is the most
randomness-efficient method of implementing state transition.
This type of usage of catalyst is not input-dependent, therefore
subject to the resource theory of this work, even when the
initial state is not full-rank. For example, even if one tries to
dephase almost-dephased input state 0.001|+〉〈+|+0.999 1

d 1

(here, |+〉 = 1√
d

∑d
i=1 |i〉) to transform it into the maximally

mixed state 1
d 1 with catalyst 1

d 1, one cannot implement more
than two times of the state transition of this type by naively
implementing the tensor product of multiple dephasing maps,
as the maximal entropy production exceeds the catalytic

entropy of the catalyst, even if that entropy production does
not actually take place. In this sense, the resource theory of
randomness for quantum maps developed in this work encom-
passes state transitions, too.

V. CONCLUSION AND OPEN PROBLEMS

The correlational resource theory of randomness developed
in this paper is distinctly different from conventional resource
theories with convex free state sets and free operations that
preserve the free state set. It is because of the concavity
of the set of states without randomness, namely, pure states
and the dynamic property of the results of randomness uti-
lization, namely, catalytic maps. Unlike many other quantum
resources, in general, randomness increases when one proba-
bilistically mixes two quantum states. It renders the resource
theory of randomness out of the scope of recently developed
general resource theory, in which it is often assumed that the
free state set is convex [45–47]. In many resource theories,
the outcome of manipulation of a resourceful quantum state is
still a quantum state, for example, a partially entangled state
can be made from a maximally entangled state through LOCC
(local operation and classical communication), however, in
the correlational resource theory of randomness, the outcome
is a dynamic process, a quantum map, that does not have a
static quantum state expression unless an input state is spec-
ified. Nevertheless, we introduced a measure of maximally
extractable randomness, the catalytic entropies, and a measure
of extracted randomness, the mutual information to establish
a correlation resource theory of quantum randomness. This
correlational aspects of quantum resources are getting more
attention in recent years [20,48], and we anticipate that ex-
ploring this direction further will enrich the resource theory
of quantum resources.

In this paper, we have seen that the maximally extractable
randomness from an arbitrary mixed quantum state depends
on the degeneracy of the state and can be quantified by the
measure we defined in this work, the catalytic entropy. We
highlighted an often overlooked fact that forming correlation
with a catalyst depletes the useful randomness within it, by
explicitly treating the correlation as a bipartite quantum state.
We also gave an operational meaning associated with the par-
tial transpose of bipartite unitary operators and showed that it
works as the recovery operator of a catalysis unitary operator
whose existence is guaranteed by the no-secret theorem.

This work opens up a broad field of research. We obtained
a characterization of catalysis unitary operator for initially
decoupled catalyst, however, the characterization for initially
correlated catalyst is still an open problem. A second open
problem is to find the “catalytic entropy of formation” of
quantum maps, i.e., for a quantum map N , find SF

α (N ) :=
minσ S


α (σ ) where the minimization is over the catalysts that
can be used for catalytic implementation of N . As the max-
imal entropy production of channel can be understood as
the counterpart of one-shot distillable entanglement of en-
tanglement theory because they correspond to the maximum
extractable amount of resource from a given resource, it is not
surprising that SG

α (N ) � SF
α (N ) holds. A natural conjecture

is that there is no “bound randomness,” randomness that is
used to implement a catalytic map that cannot be extracted,
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just as there is no bound coherence in coherence theory [49].
It can be formulated as SG

α (N ) = SF
α (N ), but it is known that

there are finite-dimensional catalytic maps whose maximum
entropy production is naturally finite, that require infinite
dimensional ancillary systems [50], therefore it implies that
there is bound randomness. This surprising asymmetry calls
for deeper exploration of the nature of quantum randomness.

Another interesting problem worth attention is solving the
problem of discontinuity of the catalytic entropies. Since
the catalytic entropies defined in this paper depend on the
degeneracy of a quantum state, they are sensitive to in-
finitesimal change of the quantum state. It is understandable
considering the requirement of exact preservation of catalyst,
which is often assumed in research on catalysis of quan-
tum resources because of the issue of embezzlement [13];
nevertheless, it is worthwhile to explore the theory of approx-
imate catalysis of randomness and formulate a continuous
version of the catalytic entropies so that the theory is robust to
noises.

ACKNOWLEDGMENTS

This work was supported by National Research Foun-
dation of Korea grants funded by the Korea government
(Grants No. 2019M3E4A1080074, No. 2020R1A2C1008609,
and No. 2020K2A9A1A06102946) via the Institute of Ap-
plied Physics at Seoul National University and by Institute of
Information & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT)
(Grants No. IITP-2021-2020-0-01606 and No. IITP-2021-0-
01059).

APPENDIX: PROOFS OF RESULTS

1. Proof of Proposition 1

Proof. (i) ⇒ (ii) is trivial. (ii) ⇒ (i) can be proved as fol-
lows. Consider a convex combination of two arbitrary inputs
ρ1 and ρ2, i.e., τ = 1

2 (ρ1 + ρ2). Then, from the invariance
of the von Neumann entropy under unitary transformation,
S(σ ) = S(Wτ σW †

τ ) = S(Wρ1σW †
ρ1

) = S(Wρ2σW †
ρ2

). There-
fore, we have S(Wτ σW †

τ ) = 1
2 [S(Wρ1σW †

ρ1
) + S(Wρ2σW †

ρ2
)].

Note that, from the linearity of (ii) of Proposition 1 in
the input state ρ, it follows that Wτ σW †

τ = 1
2 (Wρ1σW †

ρ1
+

Wρ2σW †
ρ2

). Therefore, from the saturation condition of the
concavity of the von Neumann entropy [51], it follows that
Wρ1σW †

ρ1
= Wρ2σW †

ρ2
. The equivalence of (i) and (iii) was

shown in Ref. [9]. The equivalence between (iii) and (iv)
follows from the fact that ψ

−1/2
R ψRAψ

−1/2
R is an unnormalized

maximally entangled state and the Choi-Jamiołkowski
isomorphism [52,53]. By multiplying (iv) by ψ

−1/2
R from

both sides, one can check that (iv) is the Choi matrix
expression of (iii). �

2. Proof of Proposition 2

Proof. The following lemma was first proved as a special
case more general result for von Neumann algebra the-
ory [9,54]. Here we give a more elementary proof.

Lemma 20. Let � be a unital channel on a finite dimen-
sional Hilbert space H given as �(ρ) := ∑

i KiρK†
i . If � fixes

a positive Hermitian operator σ > 0 on H, i.e., �(σ ) = σ ,
then � also fixes the projector onto each eigenspace of σ . Fur-
thermore, each projector commutes with each Kraus operator
Ki of � regardless of the choice of Kraus operators.

Proof. Without loss of generality, we can assume that σ

has at least two different eigenvalues. Let λi be the ith largest
eigenvalue of σ with 	i being the projector onto the corre-
sponding eigenspace. We first prove that � fixes the projector
	m onto the eigenspace corresponding to the smallest eigen-
value λm of σ . It will prove the desired lemma since, then,
� also fixes σ + ‖σ‖	m whose smallest eigenvalue is the
second smallest eigenvalue of σ and the same conclusion can
be drawn about σ + ‖σ‖	m. First, let |ψ〉 be an arbitrary
eigenvector of σ corresponding to λm. We conjugate �(σ ) =
σ with |ψ〉 to get the following equation:

λm =
∑

i

〈ψ |�(	i )|ψ〉λi. (A1)

Here, {〈ψ |�(	i )|ψ〉}m
i=1 forms a probability distribution since∑

i 	i = 1 and � is unital. Therefore, the right-hand side
of Eq. (A1) is an average of {λi}, which is strictly larger
than λm whenever 〈ψ |�(	m)|ψ〉 < 1. Therefore, we have
〈ψ |�(	m)|ψ〉 = 1. Since this result holds for arbitrary eigen-
vector |ψ〉 corresponding λm, we have �(	m) = 	m ⊕ P
for some P � 0, but since Tr�(	m) = Tr(	m), we have
�(	m) = 	m.

Let |ψ〉 and |φ〉 be eigenvectors corresponding to distinct
eigenvalues λr and λs of σ . Then we have

〈ψ |�(|φ〉〈φ|)|ψ〉 � 〈ψ |	s|ψ〉 = 0, (A2)

so we have 〈ψ |�(|φ〉〈φ|)|ψ〉 = 0 but 〈ψ |�(|φ〉〈φ|)|ψ〉 =∑
i〈ψ |Ki|φ〉〈φ|K†

i |ψ〉 = ∑
i |〈ψ |Ki|φ〉|2. It implies that

〈ψ |Ki|φ〉 = 0 for every i, which implies that [	i, Kj] = 0 for
every i and j. �

Lemma 20 yields the following result. Without loss of
generality, we assume that the catalysis unitary operator U
is in its canonical form. Consider the quantum channel T
defined as T (τ ) := TrAU ( 1

d 1 ⊗ τ )U †. Note that T is a unital
channel that also fixes σ . Therefore, if {|s〉} is a basis on A,
then 1√

d
(〈s| ⊗ 1)U (|r〉 ⊗ 1), Kraus operators of T , commute

with 	i, arbitrary projector onto one of eigenspaces of σ .
Therefore, the catalysis unitary operator U itself also com-
mutes with every 1 ⊗ 	i. It is equivalent to [U,1 ⊗ σ ] = 0.
It implies that 	i are also compatible with U since

λiTrAU (ρ ⊗ 	i )U
† = TrAU (ρ ⊗ 	iσ	i )U

† (A3)

= 	iTrAU (ρ ⊗ σ )U †	i (A4)

= 	iσ	i = λi	i, (A5)

for arbitrary ρ. By the linearity, it follows that
∑

i 	i = 1B is
also compatible with U . �

3. Proof of Theorem 4

Proof. First, assume that U : HAB → HAB a unitary oper-
ator whose partial transpose U TA is also unitary. We define a
unnormalized maximally entangled state on system A and its
copy A′ as |�〉 := ∑

i |ii〉AA′ . Then, for any quantum state ρA
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on system A,

TrAU

(
ρA ⊗ 1

dB
1B

)
U † (A6)

= 〈�|AA′UAB

(
ρA ⊗ 1

dB
1B

)
U †

AB|�〉AA′ (A7)

= 〈�|AA′U TA
A′B

(
ρA ⊗ 1

dB
1B

)
U TA†

A′B |�〉AA′ (A8)

= TrA

(
ρA ⊗ 1

dB
1B

)
= 1

d
1B. (A9)

In the first equality, the fact that 〈�|AA′XA|�〉AA′ =∑
i〈i|AXA|i〉A = TrX for any operator on A is used. In

the second equality, we used the property of |�〉 that
(1A′ ⊗ OA)|�〉 = (OT

A′ ⊗ 1A)|�〉 for any operator O. In the
third equality, U TA

A′B and U TA†
A′B canceled each other as U TA

A′B
is unitary by the assumption. Therefore, U is the catalysis
unitary operator for a catalysis that uses 1

dB
1B as the catalyst.

Conversely, assume that U is the catalysis unitary operator
of a catalysis that uses an arbitrary quantum state σ as its
catalyst. From Proposition 2, we can assume that σ = 1

dB
1.

We input |�〉AA′ into the catalysis. If we trace out the sys-
tem A after applying U to A and B, then we get U TA (1A′ ⊗
1

dB
1B)U TA† = 1

dB
U TAU TA† for a similar reason with that of

the previous case. However, this state should be TrA[(1A′ ⊗
U )|�〉〈�|AA′ ⊗ 1

dB
1B(1A′ ⊗ U †)] = 1A′ ⊗ 1

dB
1B since the cat-

alyst should remain unchanged regardless of the input
state [3]. This proves that U TA is unitary. �

4. Proof of Proposition 5

Proof. Consider the system A is initially a part of a
maximally entangled state |�〉RA = 1√

d

∑d
i=1 |ii〉RA whose

marginal state on A is 1
d 1A. The catalysis condition Eq. (2)

is satisfied if and only if RB is in a product state after ap-
plying U to AB. Note that the mutual information I (R : B) =
S(R) + S(B) − S(RB) is zero if and only if the composite
system RB is in a product state. Since the system R does
not participate in the interaction, R stays in the maximally
mixed state, i.e., S(R) = log2 d . The composite system RB is
in U TA (1R

d ⊗ σB)U TA† and U TA
RB is also a unitary operator, hence

S(RB) = log2 d + S(σ ). Therefore, I (R : B) = S(B) − S(σ )
and S(B) = S(TrAU (1d ⊗ σB)U †), we get the wanted result.�

5. Proof of Theorem 8

Proof. Consider a catalytic map � using σ as a catalyst
given as

�(ρ) = TrBU (ρA ⊗ σB)U †. (A10)

It follows that [U,1A ⊗ σB] = 0, which was first proved in
Ref. [9], from Proposition 2. Therefore, by letting Ui :=
(1A ⊗ 	i )U (1A ⊗ 	i ), we can see that each Ui is a unitary
operator on supp(1A ⊗ 	i ). It allows us to decompose � into
the following form:

�(ρ) =
∑

i

λiriTrBUi(ρA ⊗ πi )U
†
i , (A11)

where πi := 1
ri
	i. Thus, � can be considered a probabilistic

mixture of subchannels, i.e., � = ∑
i λiri�i, where �i(ρ) :=

TrBUi(ρA ⊗ πi )U
†
i . Note that

∑
i λiri = 1. Since each �i is

a catalysis using a uniform catalyst, each of them can pro-
duce entropy up to 2 log2 ri. Now, for arbitrary pure state
input φ, the entropy production by � is given by S[(I ⊗
�)(φ)], which is upper bounded by H (λiri ) + ∑

i λiriS[(I ⊗
�i )(φ)]. The latter terms is, in turn, upper bounded by
2

∑
i λiri log2 ri. Therefore, we get the upper bound H (λiri ) +

2
∑

i λiri log2 ri = S(σ ) + ∑
i λiri log2 ri.

We will show that this upper bound is indeed achievable.
First we let n be the number of different eigenvalues of σ

and R be the least common multiple of all r2
i . Suppose that

the system A is composed of two systems, n-dimensional A1

and R-dimensional A2. Similarly, we consider their reference
systems E1 and E2 with the same dimensions. We define the
following entangled state:

|〉AE = 1√
nR

n∑
i=1

R∑
j=1

|i j〉A1A2 ⊗ |i j〉E1E2 .

Next, consider the following unitary operator U acting on A
and B:

U =
n∑

i=1

r2
i∑

j=1

VA1i ⊗ P(i)
A2 j ⊗ W (i)

B j . (A12)

Here, P(i)
j are mutually orthogonal projectors satisfying

TrP(i)
j = R/r2

i on A2 satisfying
∑

j P(i)
j = 1A2 for all i. Also,

{Vm} and {W (i)
m } are the sets of orthogonal unitary opera-

tors on, respectively, A1 and supp	i satisfying 	iW (i)
m 	i =

W (i)
m . One can check that U †U = UU † = 1AB. The catalytic

map � defined in such a way increases the entropy of the
pure input state AE by H (λiri ) + 2

∑
i λiri log2 ri = S(σ ) +∑

i λiri log2 ri. �

6. Proof of Theorem 9

Proof. Consider an arbitrary catalysis � whose catalyst is
σ . We employ the same decomposition of � = ∑

i λiri�i in
the proof of Theorem 8. The following Lemma will be helpful
for the proof.

Lemma 21. Let a quantum state ρ be a convex sum of other
quantum states, i.e., ρ = ∑

i piρi. Then we have

Smin (ρ) − Smin (ρi ) � − log2 pi

for every i.
It follows from the facts that 2−Smin (ρ) = max|ψ〉〈ψ |ρ|ψ〉

and that, for |φ〉 such that 2−Smin (ρi ) = 〈φ|ρi|φ〉, pi2−Smin (ρi ) �∑
i pi〈φ|ρi|φ〉 = 〈φ|ρ|φ〉 � max|ψ〉〈ψ |ρ|ψ〉 = 2−Smin (ρ).
For arbitrary bipartite state φ, we apply this Lemma by sub-

stituting ρ = (I ⊗ �)(φ), ρi = (I ⊗ �i )(φ) and pi = λiri.
Now, as each �i is a catalysis with the corresponding catalyst
πi, from the weak subadditivity of Rényi entropy [55], we
have

Smin [(I ⊗ �i )(φ)] − Smax (πi ) � Smin (πi ).

However, since the catalyst πi is uniform, we have Smin (πi) =
Smax (πi ) = log2 ri, thus an upper bound Smin [(I ⊗ �i )(φ)] �
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2 log2 ri follows. Combining all the results, we have

Smin [(I ⊗ �)(φ)] � − log2(λi/ri ).

This result holds for every i and pure state φ, so we get

max
φ

Smin [(I ⊗ �)(φ)] � − max
i

log2(λi/ri ), (A13)

where the left-hand side can be interpreted as the maximal
min-entropy production on pure states by �. We claim that,
from Lemma 21, it follows that actually the maximal min-
entropy production can be achieved with a pure state input.
It can be shown by substituting ρ = (I ⊗ �)(τ ), where τ

is an arbitrary (possibly mixed) input state, and ρi = (I ⊗
�)(τi ), where τ = ∑

i tiτi is the spectral decomposition of
τ so that each τi is a pure eigenstate of τ corresponding to
the eigenvalue ti and pi = ti. By picking the index k such
that tk = 2−Smin (τ ) and using the fact that Smin [(I ⊗ �)(τk )] �
maxφ Smin [(I ⊗ �)(φ)] where the maximization is over ev-
ery pure state φ so that the right-hand side is the maximal
min-entropy production of � on pure state inputs, we get the
wanted result.

Conversely, the same |〉 and U of the proof of The-
orem 8 achieves the maximal min-entropy extraction of
− maxi log2(λi/ri ) as the spectrum of the output state of the
process is {λi/ri}. �

7. Proof of Theorem 10

Proof. The proof is basically identical with that of Theo-
rem 8, except that we use the facts [56] that

(I ⊗ �)(φ) =
∑

i

λiri(I ⊗ �i )(φ) (A14)

�
⊕

i

λiri(I ⊗ �i )(φ), (A15)

and that for each i, (I ⊗ �i )(φ) � 1
r2

i
1r2

i
, where 1r2

i
is

a projector with rank r2
i . Here, ⊕ operation is the di-

rect sum operation which can be interpreted in terms of
tensor product as

⊕
i Oi = ∑

i |i〉〈i| ⊗ Oi for a set of op-
erators {Oi} with an orthonormal basis {|i〉}. The latter
majorization relation follows from the fact that the rank
of each (I ⊗ �i )(φ) is upper bounded by r2

i from the
triangular inequality of the max-entropy. From the Schur
concavity of Rényi entropy, we have Sα[(I ⊗ �)(φ)] �
Sα (

⊕
i λir

−1
i 1r2

i
) = 1

1−α
log2

∑
i λ

α
i r2−α

i . Again, the maximal
entropy extraction is achievable with pure states since for
any mixed state input ρ with the spectral decomposition ρ =∑

i aiφi, we have

(I ⊗ �)(ρ) =
∑

i

ai(I ⊗ �)(φi ) (A16)

�
⊕

i

ai(I ⊗ �)(φi) �
⊕

i

ai

(⊕
j

λ j r
−1
j 1r2

j

)

(A17)

=
∑

i

ai|i〉〈⊗|
(⊕

j

λ jr
−1
j 1r2

j

)
. (A18)

Note that Sα (
∑

i ai|i〉〈i|) = Sα (ρ). Repeatedly, from the
Schur concavity of Sα , it follows that Sα[(I ⊗ �)(ρ)] �
Sα[(

∑
i ai|i〉〈i|) ⊗ (

⊕
j λ jr

−1
j 1r2

j
)] = Sα (ρ) + S


α (σ ), i.e., the
Rényi entropy production by � on ρ, Sα[(I ⊗ �)(ρ)] −
Sα (ρ) is upper bounded by S


α (σ ).
Conversely, this bound can be achieved with the same

example in the proof of Theorem 8. �

8. Proof of Corollary 12

Proof. Consider the decomposition of � of the from of
Eq. (A11), which we re-express as � = ∑

i λiri�i. By denot-
ing the entanglement-assisted classical capacity of �i by Ci,
we have the following inequality [5]:

Ci − CEA(�) � − log2 λiri. (A19)

However, from the proof of Theorem 8, it follows that each
Ci is d-dimensional catalysis utilizing the catalyst πi, we have
the following inequality [9]:

2(log2 d − log2 ri ) � Ci. (A20)

From these two inequalities we get the following relation:

2 log2 d − CEA(�) � − log2(λi/ri ). (A21)

By maximizing log2 ri over i we get 2 log2 d − CEA(�) �
�max (σ ) − log2 λi. As it holds for every i, we get the wanted
result. �

9. Proof of Theorem 13

Proof. We assume that the catalyst σ has the
eigenspace decomposition σ = ‖d‖−1

2

∑
m dm	m with

Tr	m = dm. Let Sm := ∑m−1
k=1 d2

k with S1 := 0 and
‖d‖2

2 ⊗ dm-dimensional unitary operator Wm be defined
as Wm := d−1/2

m

∑dm−1
i, j=0 ω

i j
m ZSm+idm+ j ⊗ |mi〉〈mj |, where ωm

is the dmth root of unity and {|mi〉} is an orthonormal basis
of the support of 	m. Note that each Wm is a catalysis
unitary operator for the catalyst d−1

m 	m that implements the

random unitary map �m(ρ) := d−2
m

∑d2
m−1

k=0 ZSm+kρZ−Sm−k .
Then

∑
m Wm is a catalysis unitary operator on ‖d‖2

2 ⊗ ‖d‖1-
dimensional space that implements a convex sum of �m, i.e.,

�(ρ) = ‖d‖−2
2

∑
m d2

m�m(ρ) = ‖d‖−2
2

∑‖d‖2
2

k=1 ZkρZ−k , which
is the ‖d‖2

2-dimensional dephasing map with respect to the
eigenbasis of Z . �

10. Proof of Theorem 14

Proof. We first let ρi be a quantum state that achieves
Sα (i ) = Sα[i(ρi )] − Sα (ρi ) for i = 1, 2 and let �Sα =
Sα (1) + Sα (2) − S


α (σ ). Then, we get, omitting the sub-
script, i.e., Iα (A1 : A2) = Iα (A1 : A2)(ρ1⊗ρ2 ),

Iα (A1 : A2)

= Sα[1(ρ1)] + Sα[2(ρ2)] − Sα[(ρ1 ⊗ ρ2)]

= Sα (1) + Sα (2) + Sα (ρ1 ⊗ ρ2) − Sα[(ρ1 ⊗ ρ2)]

= �Sα + S

α (σ ) + Sα (ρ1 ⊗ ρ2) − Sα[(ρ1 ⊗ ρ2)]

� �Sα,
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where the second equality holds since Sα (i ) = Sα[i(ρi )] −
Sα (ρi ) for i = 1, 2 and Sα (ρ1 ⊗ ρ2) = Sα (ρ1) + Sα (ρ2), and
the third inequality holds since �Sα = Sα (1) + Sα (2) −
S
(σ ). The inequality holds since S


α (σ ) is the maximally
extractable entropy from σ through catalysis and  itself
is also being implemented catalytically, therefore S


α (σ ) �
Sα[(ρ1 ⊗ ρ2)] − Sα (ρ1 ⊗ ρ2). �

11. Proof of Proposition 16

Proof. We can assume that the target map � is given as
�(ρ) = |0〉〈0| without loss of generality. The maximal en-
tropy decrease by � is log2 d which can be achieved only with
the maximally mixed input state 1

d 1, and the maximal entropy
increase by I ⊗ � is also log2 d , achieved with a maximally
entangled pure input state, e.g., 1

d |�〉〈�|.
Therefore, the mutual information of the intermediate

should be able to change by log2 d in both directions.
However, the mutual information of an intermediate for a

d-dimensional catalyst is upper bounded by 2 log2 d , which
can only be achieved with the maximally mixed catalyst. It
leaves log2 d as the only possible value for the mutual infor-
mation of the initial intermediate. �

12. Proof of Proposition 17

Proof. Let � be the quantum map in question and let A be
the system � acts on. Let γ be the quantum state that achieves
the entropy decrease of �S, i.e., S(γ ) − S[�(γ )] = �S. Con-
sider a purification |G〉AB of γ , i.e., TrB|G〉〈G|AB = γA. Next,
we let ζAB := (�A ⊗ IB)(|G〉〈G|AB) and use the inequality
S(B)ζ − S(A)ζ � S(AB)ζ from the Araki-Lieb inequality of
the von Neumann entropy [31]. Note that S(A)ζ = S[�(γ )]
and S(B)ζ = S(γ ). Therefore, S(B)ζ − S(A)ζ equals to the
local decrease of entropy by �. Similarly, S(AB)ζ can be
interpreted as the global entropy increase of the pure input
state |G〉AB as a pure state has zero von Neumann entropy.
This proves the desired result. �

[1] P. Boes, H. Wilming, R. Gallego, and J. Eisert, Catalytic Quan-
tum Randomness, Phys. Rev. X 8, 041016 (2018).

[2] P. Boes, J. Eisert, R. Gallego, M. P. Müller, and H. Wilming,
Von Neumann Entropy from Unitarity, Phys. Rev. Lett. 122,
210402 (2019).

[3] S. H. Lie, H. Kwon, M. Kim, and H. Jeong, Quantum one-time
tables for unconditionally secure qubit-commitment, Quantum
5, 405 (2021).

[4] S. H. Lie, S. Choi, and H. Jeong, Min-entropy as a resource
for one-shot private state transfer, quantum masking, and state
transition, Phys. Rev. A 103, 042421 (2021).

[5] S. H. Lie and H. Jeong, Randomness cost of masking quantum
information and the information conservation law, Phys. Rev. A
101, 052322 (2020).

[6] M. P. Müller, Correlating Thermal Machines and the Second
Law at the Nanoscale, Phys. Rev. X 8, 041051 (2018).

[7] A. Rényi et al., On measures of entropy and information, in
Proceedings of the 4th Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Contributions to the The-
ory of Statistics (The Regents of the University of California,
Berkeley, CA, 1961).

[8] E. Chitambar and G. Gour, Quantum resource theories, Rev.
Mod. Phys. 91, 025001 (2019).

[9] S. H. Lie and H. Jeong, Randomness for quantum channels:
Genericity of catalysis and quantum advantage of uniformness,
Phys. Rev. Research 3, 013218 (2021).

[10] M. Horodecki, P. Horodecki, and J. Oppenheim, Reversible
transformations from pure to mixed states and the unique mea-
sure of information, Phys. Rev. A 67, 062104 (2003).

[11] J. Scharlau and M. P. Mueller, Quantum Horn’s lemma, finite
heat baths, and the third law of thermodynamics, Quantum 2,
54 (2018).

[12] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens,
and N. Y. Halpern, The resource theory of informa-
tional nonequilibrium in thermodynamics, Phys. Rep. 583, 1
(2015).

[13] N. H. Y. Ng and M. P. Woods, Resource theory of quan-
tum thermodynamics: Thermal operations and second laws,

Thermodynam. Quantum Regime: Fund. Aspects New Direct.
195, 625 (2018).

[14] F. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantum
thermodynamics of general quantum processes, Phys. Rev. E
91, 032119 (2015).

[15] F. Buscemi, Private quantum decoupling and secure disposal of
information, New J. Phys. 11, 123002 (2009).

[16] D. Gottesman, Theory of quantum secret sharing, Phys. Rev. A
61, 042311 (2000).

[17] R. Cleve, D. Gottesman, and H.-K. Lo, How to Share a Quan-
tum Secret, Phys. Rev. Lett. 83, 648 (1999).

[18] H. Imai, J. Müller-Quade, A. C. A. Nascimento, P. Tuyls, and
A. Winter, An information theoretical model for quantum secret
sharing schemes, Quantum Inf. Comput. 5, 69 (2005).

[19] H. Wilming, Entropy and reversible catalysis,
arXiv:2012.05573.

[20] R. Takagi and N. Shiraishi, Correlation in catalysts enables ar-
bitrary manipulation of quantum coherence, arXiv:2106.12592.

[21] M. P. Müller and M. Pastena, A generalization of majorization
that characterizes Shannon entropy, IEEE Trans. Inf. Theory 62,
1711 (2016).

[22] H. Wilming, R. Gallego, and J. Eisert, Axiomatic characteriza-
tion of the quantum relative entropy and free energy, Entropy
19, 241 (2017).

[23] N. Shiraishi and T. Sagawa, Quantum Thermodynamics of
Correlated-Catalytic State Conversion at Small Scale, Phys.
Rev. Lett. 126, 150502 (2021).

[24] T. V. Kondra, C. Datta, and A. Streltsov, Catalytic Entangle-
ment, Phys. Rev. Lett. 127, 150503 (2021).

[25] P. Lipka-Bartosik and P. Skrzypczyk, Catalytic Quantum Tele-
portation, Phys. Rev. Lett. 127, 080502 (2021).

[26] M. N. Bera, A. Acín, M. Kuś, M. W. Mitchell, and M.
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