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Encoding of multi-modal emotional infor-
mation via personalized skin-integrated
wireless facial interface

Jin Pyo Lee1,2, Hanhyeok Jang1, Yeonwoo Jang 1, Hyeonseo Song1, Suwoo Lee1,
Pooi See Lee 2 & Jiyun Kim 1,3

Human affects such as emotions, moods, feelings are increasingly being con-
sidered as key parameter to enhance the interaction of human with diverse
machines and systems. However, their intrinsically abstract and ambiguous
nature make it challenging to accurately extract and exploit the emotional
information. Here, we develop a multi-modal human emotion recognition
system which can efficiently utilize comprehensive emotional information by
combining verbal and non-verbal expression data. This system is composed of
personalized skin-integrated facial interface (PSiFI) system that is self-pow-
ered, facile, stretchable, transparent, featuring afirst bidirectional triboelectric
strain and vibration sensor enabling us to sense and combine the verbal and
non-verbal expression data for the first time. It is fully integrated with a data
processing circuit for wireless data transfer allowing real-time emotion
recognition to be performed. With the help of machine learning, various
human emotion recognition tasks are done accurately in real time even while
wearing mask and demonstrated digital concierge application in VR
environment.

The utilization of human affects, encompassing emotions,moods, and
feelings, is increasingly recognized as a crucial factor in improving the
interaction between humans and diverse machines and systems1–3.
Consequently, there is a growing expectation that technologies cap-
able of detecting and recognizing emotions will contribute to
advancements across multiple domains, including HMI device4–6,
robotics7–9, marketing10–12, healthcare13–15, education16–18, etc. By dis-
cerning personal preferences and delivering immersive interaction
experiences, these technologies have the potential to offer more user-
friendly and customized services. Nonetheless, decoding and encod-
ing emotional information poses significant challenges due to the
inherent abstraction, complexity, and personalized nature of
emotions19,20. To overcome these challenges, the successful utilization
of comprehensive emotional information necessitates the extraction
of meaningful patterns through the detection and processing of

combined data from multiple modalities, such as speech, facial
expression, gesture, and various physiological signals (e.g., tempera-
ture, electrodermal activity)21–23. Encoding these extracted patterns
into interaction parameters tailored for specific applications also
becomes essential.

Conventional approaches for recognizing emotional information
from humans often rely on analyzing images of facial expressions24–26

or speech of verbal expression27–29. However, these methods are fre-
quently impeded by environmental factors such as lighting conditions,
noise interference, and physical obstructions. As an alternative, text
analysis techniques30–32 have been explored for emotion detection,
utilizing vast amounts of information available on diverse social media
platforms. However, this approach presents challenges due to the
diverse ambiguities and new terminologies being introduced, which
further complicates the accurate detection of emotions from the text.
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To overcome these limitations, sensing devices capable of capturing
changes in physiological signals, including EEG33–35, EMG36–38, ECG39–41

andGSR42–44 have been employed to collectmore accurate and reliable
data. These devices can establish correlations between these signals
and human emotions irrespective of environmental factors, but the
requirement of bulky equipment limits their application to everyday
communication scenarios.

In recent studies, flexible skin-integrated devices have shown the
possibility of providing real-time detection and recognition of emo-
tional information through various modalities such as facial expres-
sions, speech, text, hand gestures, physiological signals, etc.45–56.
Specifically, a resistive strain sensor has been employed to directly
detect facial strain deformations that occur during facial
expressions46,47,51,52. This approach offers simplicity by using thin and
soft skin-integrated electrode interfaces for current flow, allowing for
wearable or portable applications. However, an additional power
source, low working frequency range, and extra components for the
signal conversion cause simple modality only limited to one-to-one
correlation that imposes constraints on the range of applications such
as healthcare, VR where complementary information is needed to
approximate natural interaction, and user experience can be enhanced
by multiple ways of inputs. Furthermore, most existing studies have
primarily focused on recognizing and exploiting human emotions,
intentions or commands using the single-modal data that can have
weaknesses in specific context, thus limiting theuseof higher-level and
comprehensive emotional contexts45,48–50,53–56. On the other hand, to
overcome the drawbacks of eachmodality for a more resilient system,
multi-modal emotion recognition was conducted to draw embedded
high-level information by using the combined knowledge from all the
accessible data sensing57–59. Consequently, to effectively and precisely
encode emotional information, an advanced format of the skin-
integrated device necessitates improved wearability seamlessly inte-
grating with individuals, while possessing multi-modal sensing cap-
abilities to process and extract higher-level of information. Also, this
personalized device, capable of real-time collection of reliable and
accurate multi-modal data regardless of external environmental fac-
tors, should be accompanied by the corresponding classification
technique to encode the gathered data into personalized feedback
parameters for target applications.

Here, we proposed a human emotion recognition system in an
attempt to utilize complex emotional states with our personalized
skin-integrated facial interface (PSiFI) offering simultaneous detection
and integration of facial expression and vocal speech. The PSiFI
incorporates a personalized facial mask that is self-powered, easily
applicable, stretchable, transparent, capable of wireless communica-
tion, and highly customized to conformally fit into an individual’s face
curvatures based on 3D face reconstruction. These features enhance
the device’s usability and reliability in capturing and analyzing emo-
tional cues, facilitating the real-time detection of multi-modal sensing
signals derived from facial strains and vocal vibrations. To encode the
combinatorial sensing signals into personalized feedback parameters,
we employ a convolutional neural network (CNN)-based classification
technique that rapidly adapts to an individual’s context through
transfer learning. In the context of human emotion recognition, we
specifically focus on facial expression and vocal speech as the chosen
multi-modal data, considering their convenience for data collection
and classification based on prior research findings.

The PSiFI device is basically comprised of strain and vibration
sensingunits basedon triboelectrification todetect facial strain for facial
expression and vocal vibration for speech recognition, respectively. The
incorporation of a triboelectric nanogenerator (TENG) enables the sen-
sor device to possess self-powering capabilities while offering a broad
range of design possibilities in terms of materials and architectures60,61,
thus fulfilling the requirements of personalized andmulti-modal sensing
devices. The sensingunits aremadeof PDMSfilmas adielectric layer and

PEDOT:PSS coated PDMS film as an electrode layer prepared by the
semi-curingmethodwhichenables thefilm toexhibit good transparency
with decent electrical conductivity. Furthermore, we demonstrated real-
time emotion recognition with data processing circuit for wireless data
transfer and real-time classification based on rapidly adapting convolu-
tionneural network (CNN)modelwith thehelpof transfer learningusing
data augmentation methods. Last, we demonstrated digital concierge
application as an exciting possibility in virtual reality (VR) environment
via human machine interfaces (HMIs) with our PSiFI. The digital con-
cierge recognizes a user’s intention and interactively offers helpful ser-
vices depending on the user’s affectivity. Our work presents a promising
way to help to consistently collect data regarding emotional speechwith
barrier-free communicationandcanpave theway towardaccelerationof
digital transformation.

Results
Personalized skin-integrated facial interface (PSiFI) system
Wedevised personalized skin-integrated facial interface (PSiFI) system
consisting of multimodal triboelectric sensors (TES), data processing
circuit for wireless data transfer and deep-learned classifier. Figure 1A
illustrates the schematics of overall process for human emotion
recognition with PSiFI from fabrication to classification task. As for
making personalized device, we brought in 3D face reconstruction
process by collecting 3D data of user’s appearance from scanned
photos and converting the data to digitalmodels. This process allowed
us to fabricate personalized devicefitted inwell with various user faces
and successfully secure individual user data for accurate recognition
task. (Supplementary Fig. 1). Subsequently, we utilized both verbal/
non-verbal expression information detected frommultimodal sensors
and classified human emotions in real-time using transfer learning
applied convolution neural network (CNN).

As shown in Fig.1B, the emotional information based on verbal/
non-verbal expression in the form of digital signals was sent to be the
PSiFI mask and wirelessly transferred with data processing circuit. To
effectively detect the signals for the emotional information, the PSiFI
was integrated with multi-modal TES to capture facial skin strains and
vocal cord vibrations by detecting electrical signals from glabella, eye,
nose, lip, chin and vocal cord selected as representative regions based
on previous studies regarding facial muscle activation patterns during
facial expression62–64.

Figure 1C provides the schematic and real image of the TES con-
sisting of simple two-layer structure where PEDOT:PSS-coated poly-
dimethylsiloxane (PDMS) and nanostructured PDMS were used as
stretchable electrode and dielectric layer respectively so that our TES
are based on single electrode mode in principle. Figure 1D shows
schematics of the PEDOT:PSS-coated PDMS and dielectric layers for
each strain and vibration type. The PEDOT:PSS-coated PDMS was
fabricated by semi-cured process65,66 where coating is conducted
before full-curing of the elastomer (Supplementary Movie 1). Our
stretchable electrode based on the semi-curing process was char-
acterized and showed better performance when it compared to con-
ventional surface treated electrode in terms of optical, mechanical,
and electrical aspects. (Supplementary Fig. 2) As shown in scanning
electronmicroscope (SEM) image in Fig.1D, for the dielectric layers we
fabricated, nano surface engineering was introduced by inductively
coupled plasma reactive ion etching process (ICP-RIE) to improve tri-
boelectric performance by enhancing specific surface area. (Supple-
mentary Fig. 3) Additionally, the dielectric layer for the vibration
sensing was perforated like the acoustic holes which enhance vibrate
the volume of air inside (Supplementary Movie 2).

Working mechanism and characterization of the strain
sensing unit
Converting facial skin strain during facial expression into distinct
electrical signals and sending the data as non-verbal information to the
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circuit system is the function of our strain sensing unit. As depicted
schematically in Fig. 2A, the strain sensing unit was fabricated with the
nanostructured PDMS for its high effective contact area as a dielectric
layer and PEDOT:PSS embedded PDMS as an electrode layer to make
TES with the single electrode structure for simple configuration to be
facilitated as wearable sensors. These two layers were separated by
double sided tapes applied to both ends of the layers as a spacer to be

consistently generate a series of electrical signals during the operation
cycle. Besides, all the parts in the sensing units aremade of stretchable
and skin-friendly viable materials and can be prepared through scal-
able fabrication processes (for the details see the “Methods” section
and Supplementary Fig. 4). These characteristics of the materials used
in the strain sensing unit allow our strain sensor to retain relatively
good electrical conductivity even under stretching in the range of
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facial skin strain during facial expression and guarantee robustness of
the sensing unit. As schematically shown in Fig. 2B, an electrical
potential builds up due to the difference between triboelectric series
based on different affinity for electrons, which the PDMS played a
triboelectrically negative material by receiving electrons and the
PEDOT:PSS based stretchable electrode played a triboelectrically
positive material by donating electrons in TES. On top of that, our
strain sensing unitmakes the contact area changeswhen stretched and
achieved even buckled states so that it can detect bidirectional strain
motion among the triboelectric based strain sensors for the first time,
according to our knowledge. Correspondingly, the generated output
signals of our strain sensing unit during the buckle-stretch cycle were
shown in Fig. 2C. The comprehensive working mechanism of the
bidirectional strain sensor for each mode was demonstrated in Sup-
plementary Fig. 5.

To characterize the strain sensing unit in terms ofmechanical and
electrical properties, a linear motor was employed to exert a cyclic
force on the sensing unit as shown in Fig. 2D. Figure 2E and F provides
our strain sensing unit sensitivity measurement in a strain range from
0% to 100% by buckling and stretching, respectively. The sensitivity
was derived from S =ΔV/Δε where ΔV is the relative potential change
and ε is the strain. As for the buckling strain, linearity of the electrical
responses and a sensitivity of 5mVwas obtained in a strain range up to
50% despite non-linear region occurred beyond the strain due to
anomalous shape change. The signals in the non-linear region were
differentiated with the difference in the width of time as shown in
Supplementary Fig. 6. As for the stretching strain, an acceptable line-
arity and sensitivity of 3mV was obtained in wide strain range up to
90%. We measured the response time of the strain sensing unit to
evaluate the performance of the unit as it can be executed real-time
classification tasks. As shown in Fig. 2G, there is no apparent latency
time between the stretching force and corresponding the output vol-
tage so thatwecanmakesure the sensingunit candetect the sensing in
real time. The stretch–release of one cycle (Fig. 2G, inset) exhibits a
response time of below 20ms. Therefore, compared with other strain
sensors, our strain sensing unit has an advantage because of its high
sensitivity in bi-direction, fast-response time and high stretchability,
which can ensure an accurate sensing of the facial expression via
converted electrical signals in real time.

We also measured the output voltage at constant strain of 40%
depending on the working frequencies ranging from 0.5 to 3Hz and
confirmed that our strain sensing unit can show reliable performance
regardless of the frequencies as shown in Fig. 2H. When it comes to
long-term use in practical application, the mechanical stability of our
sensing unit also can be considered as important property. As
demonstrated in Fig. 2I, apparent output voltages changes were not
observed for the strain sensing unit after 3000 continuous working
cycles under 40% strain. It is noteworthy that the 40% strain change is
way beyond the requirement for most facial skin strain during facial
expression demonstrations45,67.

Working mechanism and characterization of the vocal
sensing unit
Our vocal sensing unit has a function of capturing vocal vibrations on
the vocal cord during verbal expression and sending the data as verbal

information to the circuit system. As shown in Fig. 3A, the vocal sen-
sing unit was fabricated with the holes patterned PDMS as dielectric
layer and PEDOT:PSS embedded PDMS as an electrode layer to make
TES. The holes were introduced into the vocal sensing unit as acoustic
holes which not only act as communicating vessels to ventilate an air
between two contact surfaces to the ambient air, which results in
enhanced flat frequency response but also reduce the stiffness by
improving the movement of the rim of diaphragms68–70 (Supplemen-
tary Fig. 7 and Table S1). To be configured into TES, like the strain
sensing unit, the dielectric and electrode layer were separated by
double-sided tapes applied to both ends of the layers as a spacer for
consistent operations during working cycles. The inset to Fig. 3A
provides an enlarged view of the vocal sensing unit capturing vocal
vibrations on vocal cord. As schematically depicted in Fig. 3B, an
electrical potential builds up due to triboelectric series difference
based on an electron affinity. Figure 3C provides the schematic
drawing showing hole pattern configuration applied in vocal vibration
sensor to see how the pattern influence the output and SEM images of
the holes.

Wemeasured output voltage signals of the vibration sensing units
with different open ratios (ORs) considered the proportion of area
perforated with acoustic holes in the whole area on the frequency
response of the devices as shown in Fig. 3D. The frequency ranges we
tested encompass the fundamental frequency of typical adultmen and
women ranging from 100 to 150Hz (Fig. 3D, blue) and from 200 to
250Hz (Fig. 3D, red), respectively71. The results indicate that the
vibration sensing unit with OR value of 10 exhibited best output vol-
tage performance and the wideset bandwidth of flat frequency
response. This experimental observation is originated from a trade-off
between the deflection of dielectric layer and the effective contact
area. Larger OR leads to a larger deflection of the dielectric diaphragm
and thus a higher electric output. However, increased OR will reduce
the effective contact area for triboelectrification, and thus a lower
electrical output. Accordingly, an optimized value of OR is needed for
maximization of the electrical output. Figure 3E provides measured
data plots of output voltage signals per each different OR at the testing
frequency of 100Hz.

As shown in Fig. 3F and G, the output voltage of the vibration
sensing unit was affected by structural parameters such as the
support thickness and number of holes. As the support thickness is
increased, the gap between the triboelectric layers is larger so that
the effective contact area can be reduced thus the generated tri-
boelectric output signals is decreased. On the other hand, the larger
number of holes with the same OR condition makes the diaphragms
deflect more vigorously, thus enhancing the triboelectric output
performance. These experiments were carried out at the testing
frequency of 100Hz. Lastly, as shown in Fig. 3H, we measured the
output voltage between the vibration sensing unit with and without
holes as a function of input vibration acceleration in the ranging
from 0.1 to 1.0 g at the same testing frequency of 100Hz. Both
sensing units have a uniform sensitivity obtained from dividing the
measured output voltage by the vibration acceleration. As for the
sensitivity, the hole-patterned vibration sensing units exhibits
5.78 V/g around 2.8 times larger than that of the pristine vibration
sensing unit.

Fig. 1 | The system overview with PSiFI. A Schematic illustration of personalized
skin-integrated facial interfaces (PSiFI) including triboelectric sensors (TES), data
processing circuit for wireless communication and deep-learned classifier for facial
expression and voice recognition.B Schemes showing 2d layout for the PSiFI in the
formof wearablemask and depicting two different types of TES in terms of sensory
stimulus such as facial strain and vocal vibration. C Schematic diagram of the TES
which consists of simple two-layer structure such as electrode layer and dielectric
layer and photograph of the TES components, respectively. Scale bar: 1 cm.

D Schematics demonstrating fabricated components for our TES. As for the elec-
trode layer, PEDOT:PSSbased electrodewasmade via semi-curingprocess. (left). As
for the dielectric layer, it was designed differently considering sensing stimuli such
as strain and vibration to achieve optimal sensing performance. The inset in center
showing SEM image for nanostructured surface of strain typedielectric layer and in
right showing photograph for punched holes as acoustic holes of vibration type
dielectric layer. Scale bar: 2μm and 1mm.
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Wireless data processing process and machine learning based
real time classification
Figure 4A and B provides real images of the whole PSiFI mask and the
participant wearing the PSiFI mask properly laminated onto the par-
ticipant’s face, which made it look transparent and comfortable
enough to be worn for long time and communicate well without
interrupting expressions that can be caused by a colored device. As
schematically depicted in Fig. 4C, our wireless data acquisition and
transfer process was carried out from the data collection of the skin-
integrated facialmask by the several centimeter size of circuit board as
a signal transmitter powered by a tiny portable battery to wirelessly
transmitted data received by themain board as the receiver connected
to the laptop for storing data used to be datasets for the machined
learning.

Figure 4D provides collected triboelectric signal patterns from
each modal sensor such as lip, eye, glabella, nose, chin (for strain
sensing unit) and vocal cord (for vibration sensing unit). As for the
acquired signals from the strain sensing units, distinct patterns were
exhibited in accordance with the different facial expressions such as
happiness, surprise, disgust, anger and sadness that the participant
expressed. As for the signals from the vocal sensing unit, each signals
for different speech from the syllable such as “A”, “B”, “C” to the simple
sentence such as “I love you” clearly exhibited its own distinct patterns
and were further transformed by fast Fourier transformation (FFT)
which converts data from time domain to frequency domain to find
remarkable patterns in frequency domain so that the pattern recog-
nition performed well. We conducted separate training for the vocal
and strain signals as the interdependence between verbal and non-
verbal expressions appears to be relatively insignificant when com-
pared to thedistinct and concurrentmeasurements of themulti-modal
inputs (Supplementary Fig. 8).

When it comes to machine learning, we applied the CNN algo-
rithm as an example of algorithm for classification. Specifically, we
utilized one-dimensional CNN to classify the facial expressions and
two-dimensional CNN for speech classification, respectively (Supple-
mentaryFig. 9 andTable S2). Generally, themoredatasets our classifier
trains, the better performance it shows. However, it is not viable and
time consuming to test the sensor integrated wearable mask to many
people in practical terms. The facial muscle movements, vocal cord
vibration and sensor values corresponding to the verbal/non-verbal
expressions of the new users would be different from those of the
previous users since every human has its own characteristics. We
therefore need to adapt to a network which can be trained with even
small amounts of datasets and tuned with the new datasets from the
new users.

Figure 4E provides schematic diagrams showing the overall pro-
cess from data achieving pre-trained model trained with enhanced
accuracy by introducing data augmentation technique (Supplemen-
tary Fig. 10 andTableS3) tofine-tunnednetwork for personalizationby
exploiting pre-trained parameters called as transfer learning, which
enables the network to be trained in reduced time and effectively
adapt to new user’s datasets so that it made the real time classification
possible. In detail, a participant repeated, respectively, verbal and non-
verbal expression 20 times to demonstrate reliability for a total
acquisition of 100 recognition signal patterns per each expression. 70
patterns of total were randomly selected from the acquired signals to
serve as the training set which are subsequently augmented 8-fold
based on different methods (Jittering, Scaling, Time-warping, Magni-
tude-warping) for effective learning, and the remaining 30 signals were
assigned as the test set. Furthermore, according to theprevious report,
it was found that the movement and activation patterns of facial
muscles during facial expressions was not dissimilar depending on the
individuals62–64. Based on this fact, we anticipate that the network can
get used to adapt to new expressions from new users by rapidly
training the corresponding learning data. As for the transfer learning,

after the initial participant had firstly trained with the classifier by the
above-mentioned training method, the following participants were
wearingwith the PSiFI device and able to fast trainwith the classifier by
only repeating 10 times each on both expressions, which successfully
allow the real-time classification to bedemonstrated.When it comes to
practical application, compared with other classification methods
based on various kinds of video camera and microphone, our PSiFI
mask is free from environmental restrictions such as the location,
obstruction, and time. As shown in Fig. 4F, the real-time classification
result for combined verbal/nonverbal expressions without any
restriction exhibited very high accuracy of 93.3% and even the decent
accuracy of 80.0% was achieved despite carrying out the classification
with obstruction such as wearing a facial mask (Supplementary
Movie 3).

Digital concierge application in VR environment
As for the application with the PSiFI, we brought in VR environment
which allows individuals to experiment with how their emotions could
influence and can be expressed and implemented into specific situa-
tions in the virtual world72–74. This in turn can deepen communications
in VR environment by engagingwith human emotions. In this sense, we
selected digital concierge application that can be enriched with emo-
tional information in terms of practical use and usability. The digital
concierge is likely to be anticipated that it can provide user-oriented
services which improve quality of user’s life by promoting user’s
experience. Herein, for the first time, we demonstrated the application
which offers a digital concierge service operated with our PSiFI based
on HMI in VR environment of Unity software as shown in Fig. 5.

Figure 5A provides conceptual schematic showing how human
andmachine can interact smartly with personalized emotional context
by wearing the PSiFI. To realize this, we demonstrate VR-based digital
concierge application via HMI with our PSiFI as the overall processwas
shown in Fig. 5B. Specifically, the digital concierge system was oper-
ated based on conversation between the user’s avatar and randomly
generated avatar who serves as the virtual concierge. Additionally, we
built the digital concierge to provide various application services from
smart home to entertainment by taking into account the situations
which take place very probably in real life.

Figure 5C provides three different scenarios demonstrating smart
home, office, and entertainment application in Unity space (Supple-
mentaryMovie 4; for details, see the “Methods” secton). As for the first
scenario for smart home application, the digital concierge accessed
the user’s mood of sadness and recommend some playlist from web-
site to relieve the mood despite of user’s simple word. As for the
second scenario for office application, the digital conciergewas able to
check if the user understands contents of presentation and pop out
new window showing content interpretation that helps to promote
user’s understanding. As for the last scenario for entertainment
application, the digital concierge identifies user’s reaction to themovie
trailer and curates user-friendly contents in accordance with user’s
reaction. The applications with our PSiFI-based HMI and built-in VR
space can be greatly diversified with learning and adapting new data
regarding verbal andnon-verbal expressions fromnewusers so thatwe
strongly anticipate our highly personalized PSiFI platform contributes
to various practical applications such as education, marketing, and
advertisements that can be enriched with emotional information.

Discussion
In this work, we proposed a machine-learning assisted PSiFI for wear-
able humanemotion recognition system.The PSiFI wasmadeof PDMS-
based dielectric and stretchable conductor layers that are highly
transparent and comfortable as possible to wear in real life. By
endowing our PSiFI withmulti-modality to detect simultaneously both
facial and vocal expressions using self-powered triboelectric-based
sensing units, we can acquire better emotional information regardless
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Fig. 4 | Real-time emotional speech acquisition. A Photograph showing the
multimodality of the PSiFI attached to active units such as glabellar, eye, nose, lip,
chin, and vocal cord for simultaneous verbal/non-verbal data collection. Scale bar:
2 cm.BReal images of front (top) and side view (bottom) of the participantwearing
the PSiFI.CSchematicdiagramsof thewireless emotional speech classifying system
including PSiFI, signal processing board for wireless data transfer. D Facial strain

and vocal vibration signals were collected from the skin-integrated interface. E The
processes of learning algorithm architecture implemented in our classification
system where machine learning methods such as data augmentation and transfer
learning were applied to efficiently reduce training time for the real-time classifi-
cation. FComparison of confusionmatrix (left) and captured images (right) in real-
time classification between without and with an obstacle such as a mask.
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A

B
Emotional Speech-based VR Application

User’s Avatar with Personalized Emotion

Real-time
Emotion-based

Interaction

Human-Machine Interaction with Personalized Emotional Context

C
Scenario #1

Smart Home Application

Mood Interactive Feedback

Scenario #2

Office Application

Automatic Keyword Search

Scenario #3

Entertainment Application

User-friendly Advertising

Wear User’s PSiFI Smart Interaction with Machines using Personalized Emotional Context

Digital Concierge with Optimized Tasks

Create
Avatar

Mood interactive smart home

Smart home application

Automatic keyword search

Office application

User-friendly advertising

Entertainment application

I Love U

OK

Hello

Umm

Personalized
Response

Verbal/Non-verbal
Emotion Exp.

Fig. 5 | The demonstration for digital concierge based on the emotional speech
classifying system in VR environment. A Conceptual illustration of human
machine interaction with personalized emotional context achieved by wearing
user’s PSiFI. B Schematic diagram of the way the user interacts with the digital
concierge providing various helpful services. C The corresponding captured

images of three different scenarios as tasks (such as mood interactive feedback,
automatic keyword search and user-friendly advertising) of digital concierge which
likely take place in various places such as home, office and theater in VR environ-
ment of Unity software.
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of external factors such as time, place, and obstacles. Furthermore, we
realized wireless data communication for real-time human emotion
recognition with the help of designed data-processing circuit unit and
the rapid adapting learning model and achieved acceptable standard
in terms of test accuracy evenwith the barrier such asmask. Finally, we
first demonstrated digital concierge application in VR environment
capable of responding to user’s intention based on the user’s emo-
tional speech information. We believe that the PSiFI could assist and
accelerate the active usage of emotions for digital transformation in
the near future.

Methods
Materials
PDMS was purchased from Dow corning which consists of elastomer
base and curing set (10:1 wt/wt). Aqueous dispersions of PEDOT:PSS
solution (>3%), ethylene glycol (99.8%), and Au nanoparticles (Au NPs)
(~100 nm) dispersion in deionized water (DI) was purchased from
Sigma-Aldrich. Acetone (99.5%) and isopropyl alcohol (IPA) (99.5%)
were purchased from Samchun Chemical.

Preparationof conductivedispersion and stretchable conductor
An aqueous solution of PEDOT:PSS was firstly filtered through a
0.45mm nylon syringe filter. Next, 5 wt% DMSO was added to the
solution, and it was then mixed with 50wt% IPA solvent by vigorously
stirring at room temperature for half an hour. Subsequently, the base
monomer and curing agent were mixed with a weight ratio of 10:1 at
room temperature and then, placed into the vacuum desiccator to
degas the PDMS mixture. After 40min, 1mL of mixture was spread in
the form of a continuous layer onto the cleaned Kapton film as a
substrate using a micrometer adjustable film applicator, and allowed
to solidify into an amorphous free-standing film by heating on an oven
at 90 °C for 5min. The prepared conductive dispersion was subse-
quently coatedon the PDMS to anchor the conductive polymerswithin
the PDMS matrix before the film is fully solidified.

Fabrication of nanowire-based surface modification of
dielectric film
Nanowires on the surface of the PDMS film were formed by using
inductively coupled plasma (ICP) reactive ion etching. The dielectric
films with a thickness of 50μm were first cleaned subsequently by
Acetone, IPA and DI, then blown dry with nitrogen gas. In the etching
process, Au NPs were prepared by vortex mixer for homogeneous
distribution and deposited by drop-casting. After 30min of drying in
oven at 80 °C, the Au NPs were coated on the dielectric surface as a
nano-patternedmask. Subsequently, a mixed gas including Ar, O2, and
CF4was introduced in the ICP chamber, with a corresponding flow rate
of 15.0, 10.0, and 30.0 sccm, respectively. The dielectric films were
etched for 300 s to obtain a nanowire structure on the surface. One
power source of 400W was used to yield a large density of plasma,
while another 100W was used to accelerate the plasma ions.

Fabrication of hole-patterned dielectric films
Arrays of circular acoustic holes with various shapes and distributions
were fabricated and punched through the PDMS film (thickness
100μm) using laser-cutting technology (Universal Laser Systems Inc.).
The diameter of the smallest hole is 500μm, which is close to the line-
width limitation of the laser cutting on a plate surface.

Fabrication of self-powered sensing units
As for the strain sensing unit, the prepared stretchable conductor was
cut in the size of 1 cm× 1 cm. Next, a flat flexible cable (FFC) was
attached with the double-sided medical silicone tape (3M 2476P, 3M
Co., Ltd) for electrical connection (Supplementary Fig. 11). Then, the
surface modified dielectric film (thickness 50μm) was subsequently
placed on the layer and used as space-charge carrying layer.

As for the vibration sensing unit, the prepared stretchable con-
ductor was cut in the size of 1 cm× 1 cm. Next, the FFC was attached
with the double-sidedmedical tape for electrical connection like in the
strain sensing unit. Then, the 50μm-thick surface modified and hole
patterned PDMS film as dielectric layer was sequentially applied on the
layer and used as diaphragm deflecting with the vocal vibration.

Characterization and measurement
The morphologies and thickness of the PEDOT:PSS embedded
stretchable conductor and the nano-patterned dielectrics were inves-
tigated by using a Nano 230 field-emission scanning electron micro-
scope (FEI, USA) at an accelerating voltage of 10 kV. Optical
transmission measurements of the stretchable conductors were per-
formed on ultraviolet–visible spectrophotometer (Cary 5000, Agilent)
from 400 to 800nm. The sheet resistances (Rs) of the stretchable
conductors weremeasured using the four-point van der Pauwmethod
with collinear probes (0.5 cm spacing) connected to a four-point
probing system (CMT2000N, AIT). For the electrical measurement of
the strain sensor unit, an external shear force was applied by a com-
mercial linear mechanical motor (X-LSM 100b, Zaber Technologies)
and a programmable electrometer (Keithley model 6514) was used to
measure the open-circuit voltage and short-circuit current. For the
vibration sensor unit, a Digital Phosphor Oscilloscope (DPO 3052,
Tektronix) was used to measure the electrical output signals at the
sampling rate of 2.5 GS/s. For themulti-channel sensing system, a DAQ
system (PCIe-6351, NI) was used to simultaneously measure electrical
output signals of multi-channel sensor units.

Attachment of the device on the skin
To mount the sensor device completely onto the facial and neck skin,
we applied a bio-compatible, ultrathin, and transparent medical tape
(Tegaderm TM Film 1622W, 3M) over the edge of the sensor and the
metal lines connected to the interface circuit. The medical tape is
developed and widely utilized for skin-friendly adhesive solution.
Therefore, there was no skin irritation or itch during several hours of
wearing. The test was exempted from IRB in accordance with the
approval by UNIST IRB Committee. The authors affirm that human
research participants provided informed consent prior to inclusion in
this study and for publication of the images in Figs. 4 and 5.

Machine learning for emotion recognition
For the pre-training, a total acquisition of 100 recognition signal pat-
terns per each expression were collected from a participant repeating
20 times each on both verbal andnon-verbal expressions, respectively.
70 patterns of total were randomly selected as training set, further
augmented8-fold basedondifferent augmentationmethods (Jittering,
Scaling, Time-warping, Magnitude-warping), and the remaining
30 signals were assigned as the test set. After pre-processing step for
the datasets such as trimming in accordance with input size of the
neural network and converting to image by FFT, the 1D-CNN and 2D-
CNN were applied for non-verbal expression and verbal-expression
training. With this pre-trained classifier, a new user can rapidly custo-
mize the classifierwith its owndata by repeating 10 times eachon both
expressions, known as transfer learning, the real-time classification
was successfully demonstrated.

Demonstration of the application
The three-dimensional (3D) VR environment that the user saw was
provided by Unity3D on a computer, the facial strain and vocal vibra-
tion sensing data were sent to Unity3D through wireless serial com-
munication fromBuleinno2, and the interaction between PSiFI and the
computer was done by PySerial package in python. We built VR-based
digital concierge scenario comprising of environmental assets and
generated avatars as follows. The virtual environments assets such as
home, office, and theater were downloaded at Unity Asset Store. The
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avatars used in the VR environments were simply created from indi-
vidual photo using readyplayer.me website. In demonstration, the
generated avatar proceeded the scenario based on the real-time
information transmitted from PSiFI and got adaptive responses from
the avatar called MIBOT virtually created for digital concierge.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other finding of
the study are present in the paper and/or the Supplementary Infor-
mation. The original datasets for human emotion recognition are
available from https://github.com/MATTER-INTEL-LAB/PSIFI.git.

Code availability
All codes used for implementation of the data augmentation and
classification are available from https://github.com/MATTER-INTEL-
LAB/PSIFI.git.
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