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Abstract: We compute an asymptotic formula for the divisor class numbers of real cubic function fields
Kn = k(3/m), where [, is a finite field with g elements, g = 1 (mod 3), k = [Fy(T) is the rational function field,
and m € F,[T]is a cube-free polynomial; in this case, the degree of m is divisible by 3. For computation of our
asymptotic formula, we find the average value of |L(s, y)[? evaluated at s = 1 when y goes through the prim-
itive cubic even Dirichlet characters of Fy[T], where L(s, y) is the associated Dirichlet L-function.
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1 Introduction

There have been many developments in the study of moments of L-function families since they have many
connections to the famous Lindeléf hypothesis for such L-functions [1]. In fact, Gauss [2] made two conjectures
on the mean value of the class numbers of quadratic number fields: one is for the imaginary case and the other
is for the real case. The conjecture on the imaginary case was proved by Lipschitz [3], Mertens [4], Siegel [5],
and Vinogradov [6], and the conjecture on the real case was proved by Siegel [5].

In the function field context as well, there has been active research done on the study of moments of
L-function families and class numbers of global function fields (e.g., refer to [7-16]). Let k = F,(T) be the
rational function field and A = F;[T], where[F, is a finite field of order q. Let K be a global function field, which
is an algebraic extension over k. We say that K is real if the infinite place © of k splits completely in K;
otherwise, we call K imaginary. Inspired by Gauss’s conjectures, Hoffstein and Rosen [9] computed the mean
value of the (divisor) class numbers h,, of quadratic function fields k(~/m), where m is a nonsquare poly-
nomial in A. We point out that they computed both cases of imaginary fields and real fields. In detail, for a
positive integer n, let A, be the set of monic polynomials in A of degree n. They obtained the following results:
if n is odd (in this case, k(~/m) is imaginary), then
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and if n is even (in this case, k(~/m) is real), then

* Corresponding author: Jinjoo Yoo, Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, 50,
UNIST-gil, Ulsan 44919, Republic of Korea, e-mail: jinjooyoo@unist.ac.kr

Yoonijin Lee: Department of Mathematics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic

of Korea, e-mail: yoonjinl@ewha.ac.kr

Jungyun Lee: Department of Mathematics Education, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do
24341, Republic of Korea, e-mail: lee9311@kangwon.ac.kr

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

3


https://doi.org/10.1515/math-2023-0160
mailto:yoonjinl@ewha.ac.kr
mailto:lee9311@kangwon.ac.kr
mailto:jinjooyoo@unist.ac.kr

2 = Yoonjin Lee et al. DE GRUYTER

1 {(2) »
il R = (q -
pr mEZA ; @- D755

where {(s) is the zeta function of A. In fact, we note that iy, = RpRp [17, Prop. 14.7], where P is the ideal class number
of k(~/m) (the order of the ideal class group of the maximal order O m) 0fk(~/m)) and Ry, is the regulator of k(~/m ).

Now, we discuss the case of cubic fields. As a matter of fact, in the number field situation, there has been no
work done on the mean value computation for cubic fields yet. On the other hand, in the function field context,
Lee et al. [18] obtained an asymptotic formula for the mean value of the divisor class numbers of cubic function
fields K, = k(3/m), where q = 1 (mod 3), m € F;[T] is a cube-free polynomial, and deg(m) = 1 (mod 3); in this
case, Ky, is imaginary. Therefore, the goal of this article is to compute an asymptotic formula for the mean value
of the divisor class numbers of real cubic function fields Kp,; in this case, deg(m) is divisible by 3. We note that the
infinite place ® of k splits completely in K;,, when the degree of m is divisible by 3. To achieve our goal, we
compute the mean value of |L(s, y)|* evaluated at s = 1 when y average runs through the primitive cubic even
Dirichlet characters of F,[T] as in Theorem 1.1, where L(s, y) is the associated Dirichlet L-function.

We state the main results as follows.

Zoqr - 2+ (1= qghn-1)|,

Theorem 1.1. Let h be a polynomial in A = [F;[T] with deg(h) = g + 2. Let S; be the set of primitive cubic even
characters with conductor g. Then, we have the following:

2 LA NP = (Cg + Cg# + O[qfwgﬂl' )

XESg

Furthermore, the average value of |L(1, y)|? is given as follows:

2
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where B; and C; (i = 1, 2) are defined in Notation 1 as follows:

Notation 1.

|P| = qi84 with P € A4,

&3 is the third root of unity,

T(X,y) = rl(l _ XZdeg(P) _yzdeg(P) _ ()O))deg(P) + (Xzy)deg(P) + (Xyz )deg(P))’
P
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As a consequence, we find an asymptotic formula for the average value of the class numbers of cubic real
function fields in Theorem 1.2.

Theorem 1.2. Let M; be the set of monic cube-free polynomials m in A = [F,[T] such that the degree of m is
divisible by 3 and the genus of K, = k(3/m) is g, where g is a positive integer. Let hy, be the divisor class number
of Ky, which is defined to be the order of the divisor class group of K.
Then, the average value of the class numbers hy, of real cubic function fields Ky, is given as follows:
ZmeMghm _q3(Gg + &)

8
= + O(g2*8 s
M| Bg+B OO

where B; and C; (I = 1, 2) are defined in Notation 1.

We briefly mention the difference between our current work and the previous work [18] as follows. For
computation of the mean value of |L(s, y)|?> evaluated at s = 1, in [18], y runs through the primitive cubic odd
Dirichlet characters of IF;[T]; in this article, we deal with the case of the even Dirichlet characters of F,[T]. We
emphasize that the computational complexity for |L(1, y)]> with even characters y increases significantly
compared with the case of odd characters y. In fact, the major difference between the even case and the
odd case in terms of complexity comes from the difference between two functional equations of L(s, y) for odd
and even primitive characters as follows. Let y be a primitive character of modulus R # 1. By [1, Theorem 3.9],
if y is odd, then the functional equation is

degR-1

L(s, ) =W(Q)q 2 (q)%ER1LA - s, ),

and if y is even, then the functional equation satisfies the following:

(q'° = DL, ) = WONq (@ = D@ L - 5, 7),

with [W(y)| = 1.
For the case where y is odd, taking the squared modulus of both sides of the functional equation
and letting s = 1, we obtain [18, Lemma 3.1] the following:

degR-1 degR-2
LAOP Y | 2 LOL®P™+q Y | 2 LoLx)|
n=0 |0<ij<degR n=0 |0<ij<degR
i+j=n i+j=n

where Li(y) = zdega=i,aeA*X(a)~
Unlike the odd case, if y is even, we need to take derivatives of both sides of the functional equation
of L(s, y) with respect to s twice. Letting s = 1, we obtain

degR degR-1
1 SN P - .
LA OF =212 2 MOOM@DPG"+ X | 3 MOOME|2g+4 - niq e,
n=1|0<ij<degR n=1 |0<ij<degR
i+j=n i+j=n

where Mi(x) = qLi-1(x) — Li(x), L1(x) = 0, and Lg+,(y) = 0. Due to this difference, we point out that Lemma 3.2
plays a significant role for our main computation.

This article is organized as follows: in Section 2, we recall some basic definitions and necessary lemmas
that are useful for our main results; in Section 3, we estimate the value leL(l, x)I? (Lemmas 3.1-3.5), and for
the computation of ZX|L(1, x)I%, we divide the formula of ZX|L(1, x)|* into three parts; and finally in Section 4,
we give the proofs of our main results: Theorems 1.1 and 1.2.
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2 Preliminaries

Let F; be a finite field of order g, where g is an odd prime power with q =1 (mod 3). Let k = F,(T) be
the rational function field and A = [F;[T] be a polynomial ring. For a nonzero polynomial f € A, the norm of f
is defined as |f| = q%&("). We denote the set of monic polynomials of A by A*.

Definition 2.1. The zeta function of A, denoted by {4(s), is defined by the infinite series {4(s) = Zfe 4 |f75. There

2 d
are exactly ¢? monic polynomials of degree d in A; thus, Zdeg(f)sdﬁs =1+ % + % +oet %, and consequently,

{u(s) = 1_;611_3 for all complex numbers s with Re(s) > 1. Letting u = q~5, we obtain the identity

1 1 >
= — = = nqn.
GO = T T T - 2N

we use the fact that Re(s) > 1 is equivalent to |u| < 1/q. From now on, for simplicity, we denote {4(s) by {(s).

Definition 2.2. Let h be a monic polynomial in A. A Dirichlet character on A of modulus h is a function
x : A — C that satisfies the following properties: for all a, b € A,
(@) x(ab) = x(a)x(b);
(i) ifa = b (mod h), then y(a) = y(b);
(iii) y(a) # 0 if and only if (a, h) = 1.

1 if(a, h) =1,
0 if(a,h) #1;
The inverse of a Dirichlet character y, denoted by ¥, is defined by ¥ (a) = y(a) for all a € A, where y(a)
is a complex conjugate of y(a). We say that a character y is even if y(c) = 1for all ¢ € [Fj; otherwise, it is called

The trivial Dirichlet character of modulus h is defined by y(a) = we denote this by y,.

an odd character. A character y such that y* = y, and y # x, is called a cubic Dirichlet character.

A Dirichlet character of modulus h induces a homomorphism (A/hA)* — C*. Conversely, given such a homo-
morphism, there is a uniquely corresponding Dirichlet character [17, p. 35]. Abusing the notation, let y : (A/hA)* - C*
be a Dirichlet character of modulus h. For a Dirichlet character y of modulus h, we say that we may define y mod f
for fh if there exists & : (A/fA)" —» C* such that{ ° ¢, » = x, where ¢,  is a canonical homomorphism from (A/hA)*

to (A/fA)". We note that given a Dirichlet character y of modulus h, there exists a unique monic polynomial f € A
of minimal degree dividing h such that y can be defined mod f [19, Theorem 12.6.3].

Definition 2.3. Given a Dirichlet character y of modulus h, the conductor of y is f if f€ A is a monic
polynomial of minimal degree dividing h such that y can be defined mod f. Let f be the conductor of
a Dirichlet character y. If y is defined mod f; then we say that y is primitive.

We now introduce the definition of the cubic character Xy defined by the cubic residue symbol, where
p € A is an irreducible polynomial.

Definition 2.4. Let p € A" be an irreducible polynomial and a be a polynomial in A. Let ¥ be an isomorphism
between the cubic roots of unity in C* and the cubic roots of unity in [F,. We define a cubic character y, by

means of the cubic residue symbol as follows: if p|a, then x,(a) = 0; otherwise, x,(a) = a, where a is the unique

root of unity such that awsi1 = ¥Y(a) (mod p).
This definition can be extended to any monic polynomial h € A. Let h = I'Il-szlpfi be a prime factorization
in A, where ¢; are positive integers for 1 < i < s. Then, y, is defined as follows:

X = Xp Xyt ™ X @

Then, y, is a cubic character of modulus ﬂf:lpi.
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We now define an important set M, as follows. Let M, be the set of monic cube-free polynomials m
in A = [Fg[T] such that the degree of m is divisible by 3 and the genus of K, = k(¥/m) is g, where g is a positive

integer. Since m is a monic cube-free polynomial, there are monic square-free polynomials m; and m;, in A

. . (3-1ad d - i
with (my, my) =1 such that m = mym?. By [13, Lemma 3.2], we obtain G-I eg(m1)2+ eg(my) =) =g, ie,

deg(my) + deg(my) = g + 2. Therefore, the set M, can be written as follows:

M, ={m = mym} € A* | my, m, are square-free polynomials with (m;, my) = 1, deg(mym?) = 0 (mod 3),

deg(my) + deg(myp) = g + 2},

3

Let y,, be the cubic character associated with Ky, where m € M,. From the condition that 3 divides
the degree of m, the character y,, is even [8, p. 1273]. In addition, we note that the conductor of y,, is mym;.

Definition 2.5. Let y be a Dirichlet character. The associated Dirichlet L-function is defined for Re(s) > 1 by

xX(f)
L(s, y) = .
(S X) fezﬁ lfls

For the proof of our main results, we introduce a crucial lemma, i.e., known as Perron’s formula.
For convenience, we let A, (AZ,) be the set of monic polynomials of A of degree n (degree <n), respectively.

Lemma 2.6. [8, Lemma 2.1] (Perron’s formula) If the generating series A(u) = 2pcs-a(f yules’ is absolutely
convergent in|u| <r <1, then

_ 1L [ Awdu
! Ez*‘fa(f) ) Zmlu][r wou
and
(AW du
fezAgna(f) - Zﬂi|uJ|;r "l -u) u’

3 Necessary lemmas for main computations

In this section, we prove five important lemmas for finding the second moment of the class numbers of real
cubic function fields with ¢ = 1 (mod 3).
We define a set S; to be

Sg = {Ynlm € Mg}; ¢)]

we note that S, is a set of primitive cubic even characters with conductor whose degree is g.
For our computation, we need the following lemma.

Lemma 3.1. Let q be an odd prime power such that q = 1 (mod 3) and x, be a cubic character defined in equation
(2). Let S; be the set that is defined in equation (4). Then, we have the following:

M@= Y x@ = > Y X (mumd),

XESg dy+dy=g+2 mEAq
d1+2d,=0 (mod 3) myEAq,
(my,mz)=1

where d; = deg(m;) and 2, is the set of monic square-free polynomials of A of degree d; fori = 1, 2.

Proof. By equation (4), we obtain y = y,, for m € M,, where y € S;. According to the description of M; in
equation (3), we haved; + d, = g + 2and d; + 2d;, = 0 (mod 3), where d; = deg(m;) fori = 1, 2. Then, we obtain

Yx@= Y xu@= Y x(m);

XES, meMy, meM,
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the second equality, which follows from reciprocity law [17, Theorem 3.5] under the assumption that g
is an odd prime power and q = 1 (mod 3). The rest of the proof follows immediately from [8, Lemma 2.9]. [

We recall that A* refers to the set of monic polynomials of A = F,[T] and 2 is the set of monic square-free
polynomials of A of degree d. From now on, we denote by 2 the set of monic square-free polynomials of A.
In addition, for some f € A*, we denote by ab? = (1 if ab? can be written as f3. If not, we put ab? # (1.
Notation 2.

av abz . av abz
SO S GilC e R S il o)
apear labl apear  labl
deg(ab)<g deg(ab)<g
ab?=0] ab?#(]
Boyo= ) xV@?)  Boy= ) xM(abd)
a,beA” a,beAt
deg(ab)=v deg(ab)=v
ab*=0] ab?z0]
Bap= ) xV@?) Be= ) x(ab?)
a,beAt a,beAt
deg(ab)<v deg(ab)<v
ab?=0] ab?#0]
v (ab* ,
Gv= ) L) Hg-D= ) (deg(ab)y*(ab?))
a,beAt |ab| a,beAt
deg(ab)=v deg(ab)<g-1

Lemma 3.2. Let S; be a set of all primitive cubic even characters with conductor g as defined in equation (4).
Then, we obtain the following:

g+2?  _(g*+6g+7)
2

2 1L, P = ;

XESg

Gor1 + Asggn + ﬁsg

— 1)\2
rqE Z[(" )7‘(z(g D-2q-1D(q+gq-8-DHig-1)

+Qq-DE+2)qg-8-2) +q2q - 1)](3 <g-10 + Bsg-1)

, @+37
2

g+4°
2

- [q(g+3)2_ ]B =g * B =g) (B=g+1,D+ §=g+1)_(q—1)z(g+2)2.

Proof. We first claim that

(g +2)y 3 x@y®) (g*+6g+7) 3 @y ®) | 3 X(@y (b)
2 a,beAt |ab| 2 a,beat lab| a,beAt |ab|
deg(ab)=g+2 deg(ab)=g+1 deg(ab)<g

L, )P =

_1 2
+ q‘ﬂ% Y (deg(ab))(a)y (b)
a,beA’
deg(ab)<g-1
-2q-1(q+gq-g-2 y  deglaby(ay(b)

a,beA’

deg(ab)<g-1 (5)

+2q-DEg+2)(gq-g-2) +qCq-1) bZ X(@y (b)
a,beA*
deg(ab)<g-1
4 2

o r - S )

a,beA’

deg(ab)=g
3 2
+ (g; TS den®y - - v 2p,
a,beA’

deg(ab)=g+1
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where ¥ (b) = y(b?) is the inverse of y(b). Using this claim and Lemma 3.1, the result follows immediately as desired.
Now, it is sufficient to prove our claim (5). By [1, p. 250, proof of Lemma 3.11], we have the following:

g+2

@ - DAL OR= 2| Y MOoOM@|g™
n=0| 0<i,j<g+2
i+j=n

(6)

g+1
+ q 82 Z Z Mi(GOM;(Y) qU-s)Cg+a-n),

n=0| 0<i,j<g+2
i+j=n

where Mi(x) = qLi-1(x) = Li(x), Li(X) = Zaega=i,acaX (@), L-1(x) =0, and Lg.(x) = 0. We note that Lo(y) =
2 dega=0,aca'X(@) = q — 1 since x is an even character.

Taking the derivatives of both sides of equation (6) twice with respect to s and letting s = 1, we have
the following:

1|8 _
LA NP=51 2| 2 MOOMO)
n=1| 0<i,j<g+2
i+j=n

Zq—n

S

(7
g+l

+ 2| Y MOOM(r)|2g + 4 - n)qE?
n=1

0<i,j<g+2
i+j=n

1
=Lt qE2Ly).

n’q™.

We first compute the first term of equation (7), i.e., £ = Zﬁ:lzlzosliyjlsgﬂ]v[i()()]\/lj(y)

i+j=n

g+2
Li=)| Y MM
n=0| 0<i,j<g+2
i+j=n
g+2 g+2
=2 @ Y LaLadq™- Ya Y LaQOL)g™
n=0 0<i,j<g+2 n=0 |0<ij<g+2
i+j=n i+j=n
g+2 g+2
-qY| 2 LOLa@qt+ Y| Y LOOL|g™"
n=0] 0<i,j<g+2 n=0| 0<i,j<g+2
i+j=n i+j=n
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g
Z Y LOLD)|(n + 2)%4q"

0<ij<g+1
i+j=n
g+l g+2
-2 2 LOL|n+ D+ Y| )LL)
n=0| 0<i,j<g+1 n=0| 0<i,j<g+2
i+j=n +j=n
g g+l
= Z Y LOLMD|n+2Mq" =23 ¥ LOOLD|n+ D™
n=0]| 0<i,j<g+1 n=0] 0<i,j<g+1
i+j=n i+j=n
g+2
+ 2| 2 LOOLGOIG™ + Lo()Lgo(X) + Lgr2(QOLo(r))E + 22q ¢
n=0] 0<i,j<g+1
i+j=n

=-| 2 LOOLME+ VeV +| 3 LOOLX|g + 2 ¢
0<ij<g+1 0<i,j<g+1
i+j=g+1 i+j=g+2

-4 ) LOLM|E+DEE -2 3 LOnLg e
0<i,j<g+1 0<ij<g+1
i+j=g+1 i+j=g+1

g
+23 | Y LOOL™ + Lo()Lgsa(T) + Lewa(QOLo())(E + 2)>q€*?

n=0| 0<i,j<g+1
i+j=n
X(@x (b) X(@yx (b)
=—(o + 1)2 FAECU S + 2)2 AR
@ a,bZEA" |ab| @ a,bzeﬁ |ab|
deg(ab)=g+1 deg(ab)=g+2
Y (b Y (b b
Cagrn Y X@y®) _, 5 X@y®) 3 X@y (b)
a,beA* |ab| a,beA* |ab| a,heA’ |ab|
deg(ab)=g+1 deg(ab)=g+1 deg(ab)<g
x(a)x (b) x(@y (b)
=(g +2)? L (g2 + 6g + ) AR L ke
@ a,bZEA+ T a,l,ZEA+ b
deg(ab)=g+2 deg(ab)=g+1
by Y XOXO)
a,beA* |ab|
deg(ab)<g

Now, we compute £, i.e., the second term of equation (7). We note that

g+l
L= Y MQ@OM@|2g+4-n)?
n=1] 0<i,j<g+2
i+j=n

g+1

=Y Y MOM@)|2g+4-n)?-(q-DA2g+ 4
n=0| 0<i,j<g+2

i+j=n
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we use the fact that My(y) = ¢L-1(x) — Lo(x) = —(q - D).

g-1 g
L+ (@ -DA g+ =? )| ) LOOLMD(@g+2-n?-2q)| ) LOLX)|2g+3 - ny
n=0| 0<i,j<g+1 n=0] 0<i,j<g+1
i+j=n i+j=n
g+l
+ 2| Y LOoL(|@g+4-n)?
n=0| 0<i,j<g+2
i+j=n
For simplicity, let M, = |20<tjs¢*1L,(y)L;(Y )| and r = g + 2. Then, we obtain
i+j=n
r-3 r-2 r-1
Lo+ (q-1*20+0*=q Y Mu@2r - n =22 -2q Y Mu@r-n-12%+ Y Mu@2r - n)?
n=0 n=0 n=0

r-3
= ) (¢2@2r - n-2)* - 2q2r - n - 1)* + (2r - n))M,,
n=0

N
- Qqr+ 12 = (r+ 29Mpp + (r + M,y
N,
Using M, = X abea” y(a)y (b), N1 and N, can be computed as follows:
deg(ab)=n
g-1 &1 &1
Ni=(q =12 ) n*My - 4q - D)(rq - ¢ = 1) Y nMy + (4r¥(q - 1)? - 8rq(q - 1) + 4¢% - 2q) 3 M,
n=0 n=0 n=0
=(q-1? ) (deg(ab)(@y(®d)-4q-Dq+gq-g-2) Y deglaby(ay(b)
a,heA* a,hbeA*
deg(ab)<g-1 deg(ab)<g-1
FAq-DE+DEI-g-D+2q2q-1) Y  x@x®d)
a,beA*
deg(ab)<g-1
and
No=(-2qg +3)* +(g+4») Y x@x®d+@E+3?* Y x@yb);
a,beA* a,beAt
deg(ab)=g deg(ab)=g+1
thus, we obtain the desired result. O

From now on, we compute the asymptotic values of A <g1, B-y, and B<yo in Lemma 3.3, A<g, B-y,
and B<, in Lemma 3.4, and finally, G, and Hi(g - 1) (i = 1, 2) in Lemma 3.5.

Lemma 3.3. Let y € S,, where the set S, is as defined in equation (4). Let v be a nonnegative integer, and let all
the notations be the same as in Notations 1 and 2. Then, we have the following:

() Asgrr = g8 + Cg*? + 0(q:*8);
(i) By = Og(qe+8+@8));

(ii]) By = Og(qe+8+@v+8)e),
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Proof. We first compute A<g . By Lemma 3.1, we have

1
As<gn = > > > |ab|”

d1+dz:g+2 mlEQldl a,beAt
di+2d,=0 (mod 3) my€Nq, deglab)<g
(my,mgz)=1 (ab,mmz)=1

ab*=0]

where d; = deg(m;) for i = 1, 2. We consider the following generating series, which is defined in [18, Section
3.1.10:

deg(a)yy,deg(b)
oLy uwy =y 5y Xdeg(ml)ydeg(mz)w‘
m,mEA  a,beA |abl (8)
(mq,mz)=1 (ab,mymy)=1
ab?=]
As given in [18, Section 3.1.1], we can obtain the following:
£ 1 Cx,y,u,w)  dudw dy dx
Asgn = 2 2 (27miy* I I I I xbyweyse(1-u) u w y x
d1+d2=g+2 e=0 _ _ 1 _l —L y wru ( u) u w y X
dy+2d,=0 (mod 3) 1= q”lly'_ q“llwl_ q£|u|— q% )
2)(3)? D, y,1,1 dy dx
_{@xe) [ oyl &de oo,
(zﬂl) d1+d2=g+2 1 1 (1 - qx)(l - CD’)X 1)) 2 y X

dy+2d,=0 (mod 3)|X|= q”lly|= gt

where e = deg(b) and D(x, y, u, w) is defined in Notation 1.
Now, we compute the integrals over x and y of equation (9). Let 2g + 1 = a (mod 3) and g = § (mod 3),
where 0 < q,f <2.Sinced; + d, = g + 2 and d; + 2d, = 0 (mod 3), we have
di=2dy +2dy = 2(g +2)=2g+1=a (mod 3).
Thus, as in [18, Section 3.1.1], equation (9) is
y2+a—ﬁ X3—a

- dy dx
x&+l+a-p yg+2—a

7 x (10)

(2mi)? )1 - g)* - x%)

{(2){(3)* .[ J- D(x,y,1,1)
(1-
|x|=$|y|=#

Following the computation method in [18, Section 3.1.1], we obtain A<gn = Cigqs*? + Cq8*% + 0(q*8)
as desired.
For computation of 8-,, we consider the following generating series:

C‘(X’y’ u,w) = Z Z Xdeg(ml)ydeg(mz) ydes(@)y,deg(b)
my,myEeA  a,beA”
(my,my)=1 (ab,mumz)=1 (11
deg(ab)=v
ab*=0]
As in [18, Section 3.2.1], the generating series C(x, y, u, w) can be expressed as follows:
Cx,y, u,w) = L L ! ! DX, y, u, w) 12)
Yo 1-quwl-qi1-qwdl-qx1-gqy Siadite

where

Z)(X,y, u, W) = |_|(1 — X2deg(P) _yzdeg(P) — ()O,)deg(P) + (Xzy)deg(P) + (Xyz )deg(P) — (u3w3)deg(P)
P

+ (Xu3w3)deg(P) + (yMSWS)deg(P) _ (qu?;WS)deg(P) _f(u’ W)(Xdeg(P) +ydeg(P) _ XZdeg(P) _ z(xy)deg(P)
_yzdeg(P) + (Xzy)deg(P) + (Xyz )deg(P))) and
f(u, W) = u3deg(P) + (uw)deg(P) + W3deg(P) _ (u4w)deg(P) _ (uW4)deg(P) _ (u3W3)deg(P) + (u4W4)deg(P)_

We note that D(x, y, u, w) converges absolutely when |x| < % I < % ul < % and |w| < %. Applying

Lemma 2.6 to equation (12) four times and e = deg(b), we obtain
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a1 1T

i\4
di+dy=g+2 e=0(2ﬂ'l) 1 1 T B
= gl =i~ gl g
du dw dy dx

dy+2d,=0 (mod 3)
D(x,y, u, w)
1 - quw)d - @) - i - @O - XEWR T u w y x

Using the same computation as in A<g o, the integrals over u and w of equation (13) can be evaluated

D(x,y, u, w) du dw

as follows:
1 - quuw) - qu)(1 - gwPHweuw ¢ u w

wr 1 12

@iy 1, )&

DX, y, u, w) (W' - u*Hdu

1 _[ dw _[
(27i)? . @ - qwihn! e 1 - quw)(1 - qud)(w - Wu’*!

(14)

2£+%

e )
1 J' dw J- DX, y, u, w)du
(2i)? e (1-quw?) " 7 Q- qud- qud)(w - wu*!
q 3 qz£+%
1 J' dw J' D(x,y, u, w)du
@riyr 4 A-qwiw*t J o A-quw)d - qud)w - w)’
1

lul= 1

28+ 3

[wi=
e+e q

q
Noting that the second double integral of equation (14) vanishes since the integrand has no pole inside

the regions, we have the following:
1 1
B=V,D (Zﬂl) di+dy=g+2 'I '[ (1 - qX)(1 - qy)_ydzxdl
d+2d,=0 (mod 3)° MM_
5 J' dw J' D(x,y, u, w)du dy dx (15)
A-qw) J. 1-quw)d-qadHw-wuty x
| |=q " ul= ey

- Og(q§+g+(2v+g+4)g)‘

Finally, we compute B<,n. We consider the generating series (equation (11)). Applying Lemma 2.6

to equation (12) four times with e = deg(b), we obtain

Sar | 11T

w 7[1—
wi=—L5lul zﬁl

dredomge2 =yl
di+2d,=0 (mod 3) ¢ qe* s q

DX, y, u, w) du dw dy dx

1 - quw) - @B - i - g1 - xyEw A -w u w y X

As in [18, Section 3.2.1], we have the following
v = ((2.)3 I I L
ST gedzgn . (1 - @)(1 - qy)yhxh
2,20 (mod 3) X~ = @
5 J- dw J D(x,y, u, w)du dy dx a7
i @7 2 (- g - ot - 0wty X
el Joes

q
= Og(q%+g+(2v+g+4)e)_
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Lemma 3.4. For nonnegative integers g and v, let As< 2> B.,, and B-, be the same as in Notation 2. Then, we have
the following:

() Fsg = Olq:" 571 (g + D);
(ii) B=y = Og(q§+eg+V);
(iii) ?gs‘} = Og(q§+£g+1/)_

Proof. We note that

X (ab?) = x (f) = Og(q?+e8*); @18)

this follows by using a similar computation method as [18, Section 3.1.2]. By equation (18), we obtain

4 g
ﬂ_ - 0 E+gg+1 - 0 Z+gg+1 +1 .
S D R v e R A
deg(ab)<g
ab*+0

The desired results for 8-, = Og(q§+5g+V+1) and B<, = Og(q§+8g+V+1) follow immediately from equation
(18). (I

Lemma 3.5. For nonnegative integers g and v, we have the following:
() Gu = Og(q s *8" @ 8%) + Oy(gs*8™);

(i) Hg - 1) = (g - 1)'0,(q26%8) fori = 1,2,

where G, and Hi(g — 1) are defined in Notation 2.

Proof. (i) Using Lemmas 3.3 and 3.4, we obtain the following:

Xav(abZ) 1 Z o )

> = X (ab?)
a,bEA* |ab| q" apes
deg(ab)=v deg(ab)=v

1 1 _
== 2 am@h+ Y x(@?)| = (B + Bay)
q a,beA* a,beA* q
deg(ab)=v deg(ab)=v

ab*=0] ab?#0]

= lv(Og(qg*‘g*@”*g*‘”s) + Oplqi e+ r),
q

(ii) For i = 1, 2, the desired results hold by Lemmas 3.3 and 3.4 as follows:

Y deg(ab)y™(ab®)<(g-1DF Y x(ah?) = (g - ){(Bsg-10 + Bsg)
a,heA* a,beA*
deg(ab)<g-1 deg(ab)<g-1
i &1 3
= (g — D'(Oy(q s *&+C82%) + Oy(q28*€8))

= (g - 1)i0,(qi2*9). -
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4 Average value of the divisor of class numbers

In this section, we prove our main results: computing the average value of ZX|L(1, X)I* (Theorem 1.1) and
finding an asymptotic formula for the average value of the divisor class numbers of cubic real function fields
(Theorem 1.2), where y runs through the primitive cubic even Dirichlet characters of A. For estimating
the average value of 3 |L(1, )P, the following lemma plays an important role.

Lemma 4.1. Let q be an odd prime power such that q = 1 (mod 3) and M, be the set that is defined in equation (3).
Then, we have the following:

|M,| = Bigq8** + B,q8** + 0(qs*),

where 7—“(x,y) = |‘|P(1 — deeg(P) _yzdeg(P) — (Xy)deg(P) + (Xzy)deg(P) + (XyZ)deg(P))’ B1 = %7:[1 l] and

qf
: i AL
3 qu?'(x Oly=1 = - .

1-& 1-&

Proof. For i = 1, 2, let d; = degm;. Using equation (3), the cardinality of M, can be represented as follows:

M| = ) > L

di+dy=g+2 my,my€
di+2d,=0 (mod 3) (my,mz)=1

For the computation of |M,|, we consider the generating series

Clx,y) = Z xdeg(ml)ydeg(mz) _
my,myEA
(my,mz)=1

As in the proof of [18, Lemma 4.1], we obtain

cx,y) = —T( YD 19)

-qx1-
where F(x, y) = [Tp(1 — x?de8(P) — y2deg(P) — (yy)degP) 1 (x2y)desP) + (xy2)des(P)) We note that F(x, y) converges
absolutely when |x| <

Jlﬁ and |y| < % Applying Lemma 2.6 to equation (19) twice, we obtain

_ Fx,y) dy dx
Mgl = (2m>2 I I - g0 - Xy y x

d1+dz g+2 -
dy+2d,=0 (mod 3) Mlyl 5*1
By a similar computation method used in equation (9), we have the desired result. O

Proof of Theorem 1.1. By Lemma 3.2, we have the following:

3 napp- (g;Z)ZQg+2 i D Gt Asgrr + Ay
4
+qE 2[ (-1 HiAg -1 -2q-1(q+8q9- 8~ DH(g - 1)]
+qEA2Aq - DG+ (g - &~ 2) + 429 — D) Bsg10 + Bsg) o
- q_g_z[[‘Z(g +3)2 - © +24)2 (B=go + §=g) + (g+23)2 (B=gso + g:gﬂ)]

- q87((q - DAE + 2
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all the notations follow from Lemmas 3.3-3.5. We now compute each summand of equation (20) as follows:
the values of A<grand As<g follow from Lemmas 3.3 and 3.4, respectively. By Lemma 3.5, we obtain

Geg+1 = Ggra = O(q§+5g+l). Thus, the first summand of equation (20) can be computed as follows:
(g+2)2g _ (g2+6g+7)

2 g+2 2 gg+1 + ﬂsg,D + ﬁsg
+ 2)? Z+6g+7
- XY o gty - ELE D g ey 4 cggent+ et 0q1 ) + o gl g e ) B
= Cgqs*t + CE*? + Og(qie8™).
Using Lemma 3.5, the second summand of equation (20) is
go (@~ D?
qEAT g~ 1) - 2q - DG + g0 - g - DHig - 1)
| (g - D? 2 [ iare Sgve 22)
= AT @ D0(q257%) — 2q - 1)(q * 84~ & ~ 28 ~ DO(qEE)
- 1)2
. @ 2 og(q%g+sg) - 2g - 1)0g(q%g+fg) = og(q%g+sg)_
By Lemmas 3.3 and 3.4, we obtain the following:
Bega + Begr = 0y(q’s *87C82¢) + 0,(q38+8) = 0,(qi8+%)
Bogr + Bog = O(q773%) + O4(qH7%) = 0,(qi5™%)
Bgp + Bogin = 0y(q5 8°@8De) + 0 (qiEre81) = Oy(qie+e8).
Therefore, the sum of the third and fourth summands of equation (20) is
E20,(q75* ") = Oy(g?8*%9). (23)
Combining equations (21), (22), and (23) altogether, we obtain
2 LA P = (1) + (22) + (23) - 57Hq - DAg + 2 = Cgqs™2 + g2 + 0 qi”g”]'
XES,
Therefore, the average value of |L(1, y)|* is obtained directly from Lemma 4.1. O

Proof of Theorem 1.2. Since 3 divides the degree of m, we can see that the infinite place ® of k splits completely
in K, = k(3/m); therefore, K, is real.
By [16, Theorem 1.5], we obtain

R

; (24)
|dm|

IL(L )P = (q - 1)?
where hy, is the order of the ideal class group of the maximal order O, of K, Ry, is the regulator of K, and dp,
is the discriminant of K,,. In fact, we note that hy, = RRp. In addition, the discriminant of K, is (mymy)?,
which follows from [16, Theorem 1.2]. Therefore, the denominator of equation (24) \/m is equal to
=/|(mymy)?| = q4*2, where we use the fact that the degree of mym, is g + 2.

Consequently, using equation (24), Lemma 4.1, and Theorem 1.1 all together, for m € M,, the average value
of hy, is given as follows:

ZmeMghm _ qg+2 ZmEMglL(LXm)lz _ qg+2 [C]g+ Cz + 0[ g]]
| Ml (q-1)? |Mel (q - 1)?

eg-5 ||
Big + By )

thus, we obtain the result. O
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