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Abstract: In this article, a considerably efficient predictor-corrector method (PCM) for solving
Atangana–Baleanu Caputo (ABC) fractional differential equations (FDEs) is introduced. First, we
propose a conventional PCM whose computational speed scales with quadratic time complexity
O(N2) as the number of time steps N grows. A fast algorithm to reduce the computational complexity
of the memory term is investigated utilizing a sum-of-exponentials (SOEs) approximation. The
conventional PCM is equipped with a fast algorithm, and it only requires linear time complexity
O(N). Truncation and global error analyses are provided, achieving a uniform accuracy order
O(h2) regardless of the fractional order for both the conventional and fast PCMs. We demonstrate
numerical examples for nonlinear initial value problems and linear and nonlinear reaction-diffusion
fractional-order partial differential equations (FPDEs) to numerically verify the efficiency and error
estimates. Finally, the fast PCM is applied to the fractional-order Rössler dynamical system, and the
numerical results prove that the computational cost consumed to obtain the bifurcation diagram is
significantly reduced using the proposed fast algorithm.

Keywords: Atangana–Baleanu fractional derivative; fractional differential equations; predictor-corrector
methods; sum-of-exponentials approximation; sub-diffusion equation.

1. Introduction

Fractional-order differential equations (FDEs) have been successfully applied in physics,
biology, applied sciences, and engineering where memory effects are essential. FDEs are
considered a novel mathematical model and are used to describe various phenomena
in nature, such as anomalous transport [1–3], the flow in porous media [4], and so
on. Some works [5–9] have demonstrated further applications, including in electrical
circuits, chemistry, finance, chaos, control theory, heat transfer, gas dynamics, etc. The
aforementioned applications adopted the Grünwald–Letnikov, Riemann–Liouville, or
Liouville–Caputo fractional operators [5,6,8]. The definition of the Liouville–Caputo
fractional operator is as follows:

Definition 1. The Liouville–Caputo fractional derivative (Liouville–Caputo FD) of order ν ∈ R+,
n − 1 ≤ ν < n, for u(t), which was introduced in [6,10], is defined by

CDν
a u(t) =

1
Γ(n − ν)

∫ t

a
(t − s)n−ν−1u(n)(s)ds. (1)

Recently, new fractional differential operators with a nonlocal and non-singular kernel,
e.g., Caputo–Fabrizio and Atangana–Baleanu, were proposed in [9,11]. Also, the more
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general Riemann–Liouville and Liuoville–Caputo fractional derivatives were introduced
in [12,13].

In [14], Atangana and Baleanu suggested a new fractional differential operator involving
the Mittag–Leffler kernel and applied it to a heat transfer model. This operator has been
applied in many research areas [15–17]. In this paper, we aim to solve the nonlinear
fractional differential equation of order ν ∈ (0, 1),{

ABCDν
a u(t) = f (t, u(t)), t ∈ [a, T],

u(a) = u0,
(2)

where ABCDν
a is the Atangana–Baleanu fractional derivative of order ν in the Liouville–Caputo

sense (ABC FD):

Definition 2. The Atangana–Baleanu fractional derivative of order ν ∈ (0, 1) in the Caputo
sense for u(t), which was introduced in [14], is defined by

ABCDν
a u(t) =

B(ν)
1 − ν

∫ t

a
Eν

[
−ν

(t − s)ν

1 − ν

]
u′(s)ds, u(t) ∈ H1(a, T) (3)

where B(ν) is a normalization function with B(0) = 1 and B(1) = 1, and Eν(z) is the one-parameter
Mittag–Leffler function defined by

Eν(z) =
∞

∑
k=0

zk

Γ(νk + 1)
, ν > 0.

By taking the Laplace transform of (2) and then performing the inverse Laplace
transform, we obtain the solution u(t) of the model problem (2) as the Volterra integral
equation of the second kind [14], as follows:

u(t) = ϕ(t, f (t)) +
dν

Γ(ν)

∫ t

a
(t − s)ν−1 f (s, u(s))ds, (4)

where
ϕ(t, f (t)) = u(a) +

1 − ν

B(ν)
f (t, u(t)), dν =

ν

B(ν)
.

Numerical methods for solving the ABC FDE (2) have been introduced by many
researchers. The authors of [18] suggested utilizing the Crank–Nicholson schemes for
solving the groundwater flow model with the ABC fractional derivative (3). The spectral
collocation method, based on the Chebyshev approximations, was employed to handle a
biological fractional model [19]. The authors of [20] developed the fractional Euler method
and the predictor-corrector method (PCM), which is similar to the method in [21]. The
PCM, using the product trapezoidal quadrature rule and the product rectangle rule for
solving ABC fractional initial value problems, was introduced in [22]. The modified PCM
was designed to be very accurate. Its performance stays the same regardless of the order of
the fractional derivative, as explained in [23]. This method has worked well and has been
used effectively in different research studies, for example, in [24,25].

Other numerical methods were suggested in [11,26–34].
This paper focuses on the following three topics:

1. The development of a fast algorithm that can be applied to numerical methods for
solving ABC FDEs.

2. The development of a fast PCM and its application to ABC fractional-order PDEs
(FPDEs) and fractional dynamical systems.

3. Error estimates for both conventional and fast PCMs.

We introduce the fast algorithm regarding the computation of memory terms resulting
from the non-local kernel in the ABC fractional derivative. The fast algorithm is integrated
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with the conventional PCM for solving the Volterra integral equation (4). To illustrate the
idea of the proposed fast algorithm, we assume a = 0 and discretize the uniform grid, as
follows:

ΨN := {tj : 0 = t0 < t1 < . . . < tj < . . . < tn+1 < · · · < tN = T},

with h = tj − tj−1. Equation (4) can be rewritten at time tn+1, as follows

u(tn+1) = ϕ(tn+1) + umem(tn+1) + uloc(tn+1), (5)

where

umem(tn+1) =
dν

Γ(ν)

∫ tn

0
(tn+1 − s)ν−1 f (s, u(s))ds, (6)

uloc(tn+1) =
dν

Γ(ν)

∫ tn+1

tn
(tn+1 − s)ν−1 f (s, u(s))ds. (7)

In the numerical approximation of u(tn+1), the memory term (6) has to be computed
from t0 to tn for every n due to the non-local property of the kernel (tn+1 − s)ν−1. Thus,
it is easy to see that a computational cost of O(n2) is incurred if linear interpolation of
g(s, u(s)) over Ij = [tj, tj+1] is employed. To reduce the computational cost, we modify
the sum-of-exponentials (SOEs) approximation for t−β (0 < β < 2) [35] and apply the
algorithm to the memory term umem(tn+1):

umem(tn+1) ≈
dν

Γ(ν)

Nexp

∑
i=1

ζi

∫ tn

0
e−ηi(tn+1−s) f (s, u(s))ds, (8)

where ηi and ζi (i = 1, ..., Nexp) are positive real numbers. Here, the integral term in (8) can
be rewritten as the following recurrence relation:

∫ tn

0
e−ηi(tn+1−s) f (s, u(s))ds = e−ηih

∫ tn−1

0
e−ηi(tn−s) f (s, u(s))ds +

∫ tn

tn−1

e−ηi(tn+1−s) f (s, u(s))ds.

It is worth noting that there exists a fixed number Nexp for all t ∈ [δ, T] such that
the error in (8) is given, where δ = h. Using the equation in (9), the integral term on the
left-hand side can be evaluated recursively. Because of these facts, the computational cost
to approximate the memory term umem(tn+1) is reduced by up to O(n), even if the total
number of time steps N is large. The highlights of this research, including the advantages
of the proposed fast PCM, are as follows:

1. The conventional PCM for solving ABC FDEs is suggested.
2. The fast algorithm for the computation of the memory term is proposed, and the fast

PCM only requires a computational cost of O(n).
3. Truncation and global error analyses for both conventional and fast PCMs are provided,

achieving a uniform accuracy of order O(h2) regardless of the fractional order ν.
4. We apply the proposed fast PCM to sub-diffusion FPDEs to demonstrate the efficiency

of the proposed method.
5. The proposed fast PCM is implemented to handle the fractional Rössler dynamical

system, and the performance of the fast algorithm is verified.

Our paper consists of the following sections. In Section 2, we succinctly describe
a conventional PCM for solving FDEs with the ABC FD. We propose a modified SOE
approximation of the power function based on [35]. We introduce a fast PCM for solving
FDEs with the ABC FD. The error analyses for the suggested methods are provided in
Section 3. In Section 4, numerical results are provided to support our theoretical results.
Applications to reaction-diffusion FPDEs and the fractional Rössler dynamical system are
also introduced. Finally, the conclusions are presented in Section 5.
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2. Fast Predictor-Corrector Scheme
2.1. Description of Predictor-Corrector Scheme

First, let us define some notations. For each j = 0, · · · , N, we denote uj = u(tj),
gj = g(tj, uj). Let ũP

j , and ũj be the predicted and corrected approximations of uj, respectively.

Similarly, we also denote f̃ P
j = f (tj, ũP

j ) and f̃ j = f (tj, ũj). On each interval Ij = [tj, tj+1],
we employ the Lagrange interpolating polynomial of f (t, u(t)), defined by

f (t) = Πj f (t) + Ej f (t), (9)

where

Πj f (t) =
tj+1 − t

h
f j +

t − tj

h
f j+1,

Ej f (t) =
f (2)(ηj)

2!
(t − tj)(t − tj+1), ηj ∈ (tj, tj+1).

The value of ϕ(tn+1, f (tn+1)) can be expressed by using the linear interpolation of f
on In−1 = [tn−1, tn]

ϕ(tn+1, f (tn+1)) = Φn+1 + Gn+1, (10)

where

Φn+1 = u(0) +
1 − ν

B(ν)
(− fn−1 + 2 fn), Gn+1 =

1 − ν

B(ν)
f (2)(ηn, u(ηn))h2, ηn ∈ (tn−1, tn).

By substituting (9) and (10) into (5), we have

un+1 = Φn+1 +
dν

Γ(ν)

n−1

∑
j=0

[Θ0,j
n+1 f j + Θ1,j

n+1 f j+1] +
dν

Γ(ν)
[Θ0,n

n+1 fn + Θ1,n
n+1 fn+1] + Tn+1, (11)

where

Θ0,j
n+1 =

∫ tj+1

tj

(tn+1 − s)ν−1 tj+1 − s
h

ds,

Θ1,j
n+1 =

∫ tj+1

tj

(tn+1 − s)ν−1 s − tj

h
ds,

Tn+1 = Gn+1 +
dν

Γ(ν)

n

∑
j=0

∫ tj+1

tj

(tn+1 − s)ν−1Ej f (s, u(s))ds.

Let us rewrite (11), as follows:

un+1 = Φn+1 + umem
n+1 + uloc

n+1 + Tn+1,

where

umem
n+1 =

dν

Γ(ν)

n−1

∑
j=0

[Θ0,j
n+1 f j + Θ1,j

n+1 f j+1], uloc
n+1 =

dν

Γ(ν)
[Θ0,n

n+1 fn + Θ1,n
n+1 fn+1]. (12)

Here, we employ the modified predictor-corrector method from [23] in order to obtain
the second order of convergence. Specifically, referring to Lemma 1 [23], we have

Uloc
n+1 =

dν

Γ(ν)

∫ tn+1

tn
(tn+1 − s)ν−1Πn−1 f (s, u(s))ds =

dν

Γ(ν + 2)
hν[− fn−1 + (ν+ 2) fn]. (13)
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Then, the predictor-corrector scheme of (5) is given as follows:

Corrector: ũn+1 = ϕ(tn+1, f̃ P
n+1) + ũmem

n+1 + ũloc
n+1,

Predictor: ũP
n+1 = Φ̃n+1 + ũmem

n+1 + Ũloc
n+1,

(14)

where

ũmem
n+1 =

dν

Γ(ν)

n−1

∑
j=0

[Θ0,j
n+1 f̃ j + Θ1,j

n+1 f̃ j+1], ũloc
n+1 =

dν

Γ(ν)
[Θ0,n

n+1 f̃n + Θ1,n
n+1 f̃ P

n+1],

Φ̃n+1 = u(0) +
1 − ν

B(ν)
(− f̃n−1 + 2 f̃n), Ũloc

n+1 =
dν

Γ(ν + 2)
hν[− f̃n−1 + (ν + 2) f̃n].

2.2. Sum-of-Exponentials Approximation of the Power Function

In this section, we describe the modified version of the approximation of the kernel
function t−β based on [35]. First, we give a summary of the effective SOE approximation
for t−β (0 < β < 2).

Lemma 1 ([35]). For any β > 0,

1
tβ

=
1

Γ(β)

∫ ∞

0
e−tssβ−1ds

Lemma 2 ([35]). For t ≥ δ > 0, there exists p > 0 such that

∣∣∣∣ 1
tβ

− 1
Γ(β)

∫ p

0
e−tssβ−1ds

∣∣∣∣ ≤


e−δp pβ−1

Γ(β)

1
δ

, 0 < β ≤ 1,

e−δp2β−1
(

pβ

Γ(β)
+

1
δβ

)
, 1 < β < 2.

(15)

In the original SOE approximation in [35], the upper limit of the definite integral p
in (15) was p = 2N+1. The interval [0, p] was split into three dyadic intervals:

[0, 2−M],
−1⋃

j=−M
[2j, 2j+1], and

N⋃
j=0

[2j, 2j+1]. The Gauss–Jacobi and Gauss–Legendre quadrature

rules were employed in the three intervals. Here, we normalize the interval [0, p] into [0, 1].
That is,

1
Γ(β)

∫ p

0
e−tssβ−1ds =

pβ

Γ(β)

∫ 1

0
e−tpττβ−1dτ.

Recalling M = O(log T) and N = O(log log 1
ϵ + log 1

δ ) from Theorem 1 ([35]), we
obtain following modified SOE approximation by setting M̂ = M + N + 1:

Theorem 1 (Modified SOE approximation of the power function). thmmsoeapp Let ϵ > 0
be the desired error, and choose 0 < δ ≤ t ≤ T. Let n = O(log 1

ϵ ); M̂ = O(log T + log log 1
ϵ +

log 1
δ ) + 1; η J

i and ζ J
i be n-point Gauss–Jacobi quadratures on the interval [0, 2−M̂]; and ηL

i,j

and ζL
i,j be n-point Gauss–Legendre quadrature points and weights on the intervals [2j, 2j+1] for

j = −M̂, · · · ,−1. Then, for t ∈ [δ, T] and β ∈ (0, 2),∣∣∣∣∣∣ 1
tβ

− pβ

Γ(β)

 n

∑
i=1

ζ J
i e−tpη

J
i +

−1

∑
j=−M̂

n

∑
i=1

ζL
i,je

−tpηL
i,j(ηL

i,j)
β−1

∣∣∣∣∣∣ ≤ ϵ. (16)
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Remark 1. We use n = O(log 1
ϵ ) Gauss–Legendre quadrature nodes and weights because all

dyadic intervals [2i, 2j+1], j = −M̂, · · · ,−1 are less than or equal to 1. Theorem 1 can be written
as follows for some positive real numbers ηi and ζi∣∣∣∣∣ 1

tβ
−

Nexp

∑
i=1

ζie−ηit

∣∣∣∣∣ ≤ ϵ, t ∈ [δ, T], (17)

where Nexp is the number of exponentials to be determined later and δ = h.
As mentioned in [35], the number of exponentials Nexp is required to approximate 1/tβ because

many nodes and weights are computed in each dyadic interval. Here, we apply the reduction method
based on the balanced truncation method with singular-value decomposition instead of Cholesky
factorization (see the details in Appendix A). Tables 1 and 2 show comparisons between our method
and the method in [35] regarding the number of exponentials Nexp for approximating t−ν−1 for a
fixed δ = 10−3 (Table 1) and for a fixed T = 1 (Table 2). In most cases, the number of exponentials
Nexp in our method is comparably smaller than the number of exponentials Nexp in [35]. For the
comparisons, we set M̂ = ⌈log(log(1/ϵ)) + log(1/δ2) + log T⌉+ 1 and used n = ⌈log(1/ϵ)⌉
Gauss–Legendre nodes with corresponding weights.

Table 1. Comparison of the number of exponentials Nexp for approximating t−1−ν with δ = 10−3.

T/δ 103 104 105 106 103 104 105 106

ϵ ν = 0.2 ν = 0.5

The number of exponentials Nexp in [35]

10−3 25 29 33 37 30 35 40 44
10−6 34 40 45 51 39 46 52 59
10−9 43 51 58 66 49 57 65 74

The number of exponentials Nexp in our method

10−3 18 19 21 23 19 21 23 25
10−6 30 34 37 43 31 34 39 43
10−9 45 50 53 60 45 50 54 60

Table 2. Comparison of the number of exponentials Nexp for approximating t−1−ν with T = 1.

δ 10−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

ϵ ν = 0.2 ν = 0.5

The number of exponentials Nexp in [35]

10−3 25 34 43 55 30 41 52 66
10−6 34 45 58 69 39 51 65 81
10−8 40 51 64 79 43 57 72 84

The number of exponentials Nexp in our method

10−3 18 21 25 30 19 21 27 30
10−6 30 37 43 49 31 37 44 50
10−8 40 48 56 82 41 48 58 82

2.3. Description of Fast Predictor-Corrector Scheme

In this section, we describe the fast PCM, which boosts the computational speed of
the memory term umem

n+1 . To do this, we use the SOE approximation of t−β (0 < β < 2)
introduced in Section 2.2. For simplicity, let ϵ > 0 and δ > 0 be given. Then, we have the
following: for t ∈ [δ, T],

1
tβ

−
Nexp

∑
i=1

ζie−ηit = ϵ, (18)
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By applying (18) to umem
n+1 with β = 1 − ν ∈ (0, 1), we have

umem
n+1 =

dν

Γ(ν)

n−1

∑
j=0

∫ tj+1

tj

(tn+1 − s)ν−1Πj f (s, u(s))ds

=
dν

Γ(ν)

Nexp

∑
i=1

ζi

n−1

∑
j=0

∫ tj+1

tj

e−ηi(tn+1−s)Πj f (s, u(s))ds + ϵ
dν

Γ(ν)

n−1

∑
j=0

∫ tj+1

tj

Πj f (s, u(s))ds

=
dν

Γ(ν)

Nexp

∑
i=1

ζiFi
n+1

+ Tϵ
n+1 (19)

where

Fi
n+1 =

n−1

∑
j=0

[Ψ0,j
i,n+1 f j + Ψ1,j

i,n+1 f j+1], Tϵ
n+1 = ϵ

dν

Γ(ν)

n−1

∑
j=0

∫ tj+1

tj

Πj f (s, u(s))ds,

Ψ0,j
i,n+1 =

∫ tj+1

tj

e−ηi(tn+1−s) tj+1 − s
h

ds, Ψ1,j
i,n+1 =

∫ tj+1

tj

e−ηi(tn+1−s) s − tj

h
ds.

Since tn+1 = tn + h and

Fi
n+1 =

n−1

∑
j=0

∫ tj+1

tj

e−ηi(tn+1−s)Πj f (s, u(s))ds,

it is easy to determine that Fi
n+1 has the following recurrence relation:

Fi
n+1 = e−ηihFi

n +
∫ tn

tn−1

e−ηi(tn+1−s)Πn−1 f (s)ds, i = 1, 2, · · · , Nexp. (20)

Remark 2. It is easy to see that umem
n+1 is approximated by the sum of piecewise interpolations over n

for each interval. That is, the computational cost for approximating umem
n+1 is about O(n2). From the

recurrence relation in (20), Fi
n+1 can be obtained by computing the interpolation over the interval

In−1 combined with Fi
n, which was computed at step n. Then, umem

n+1 can be determined as the sum
of Fi

n+1 for all i, i = 1, · · · , Nexp. It costs O(nNexp) to approximate umem
n+1 using the recurrence

relation. For n ≫ Nexp, the computational cost for approximating umem
n+1 is about O(n).

Let the approximate solutions of u(t) and f (t, u(t)) at t = tn+1, obtained using the
proposed PCM (14), replacing the memory term ũmem

n+1 with the summation term in (19)
using the recurrence relation (20), be denoted by ûn+1 and f̂n+1, respectively. Then, the fast
PCM of (4) is proposed as follows

Corrector: ûn+1 = ϕ(tn+1, f̂ P
n+1) + û f mem

n+1 + ûloc
n+1,

Predictor: ûP
n+1 = ϕ̂n+1 + û f mem

n+1 + Ûloc
n+1,

(21)

where

û f mem
n+1 =

dν

Γ(ν)

Nexp

∑
i=1

ζi F̂i
n+1

, F̂i
n+1 = e−ηih F̂i

n + [Ψ0,n−1
i,n+1 f̂n−1 + Ψ1,n−1

i,n+1 f̂n],

ûloc
n+1 =

dν

Γ(ν)
[Θ0,n

n+1 f̂n + Θ1,n
n+1 f̂ P

n+1],

ϕ̂n+1 = u(0) +
1 − ν

B(ν)
(− f̂n−1 + 2 f̂n), Ûloc

n+1 =
dν

Γ(ν + 2)
hν[− f̂n−1 + (ν + 2) f̂n].
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3. Error Analysis
3.1. Truncation and Global Error Analyses for the Conventional PCM

In this section, we show that the proposed conventional PCM has a uniform convergence
rate regardless of ν. First, we recall the error analysis of the second-order predictor-corrector
scheme with linear interpolation for solving FDEs with the Liouville–Caputo FD in [23]
and state the necessary lemmas for the error analysis. Herein, we denote by C a generic
constant that is independent of all grid parameters and may change case by case.

Lemma 3 (Discrete Gronwall’s inequality [36]). Let {an}N
n=0, {bn}N

n=0 be non-negative sequences
with monotonically increasing bn, satisfying

an ≤ bn + Mhγ
n−1

∑
j=0

(n − j)γ−1aj, 0 ≤ n ≤ N,

where M > 0 is bounded and independent of h, and 0 < γ ≤ 1. Then,

an ≤ bnEγ(MΓ(γ)(nh)γ).

Lemma 4. For 0 < ν < 1 ,k = 0, 1 and j = 0, 1, · · · , n − 1,

|Θk,j
n+1| ≤ (n − j)ν−1hν.

It is worth noting that the Volterra integral equation for the model problem in (4) is
similar to the form presented to (1.3) in [23], as is the PCM algorithm. Here, ϕ(t, u(t)) = u0
and dν = 1. Therefore, it is straightforward to derive the following error analysis results.

Lemma 5 (Truncation error for the predictor [23]). Suppose that f ∈ C2[0, T]. Let the
truncation error of the predictor at tn+1 be

rP
n+1 =

∣∣∣un+1 − (ϕn+1 + umem
n+1 + Uloc

n+1)
∣∣∣.

Then, there exists a constant C independent of all grid parameters such that

rP
n+1 ≤ Ch2.

Lemma 6 (Global error for the predictor [23]). Suppose that f ∈ C2[0, T] satisfies the Lipschitz
continuity condition in the second argument,

| f (t, y1)− f (t, y2)| ≤ L|y1 − y2|, ∀y1, y2 ∈ R, L > 0,

then, the global error for the predictor, eP
n+1 = |un+1 − ũP

n+1|, is given by

eP
n+1 ≤ rP

n+1 + C
Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1ej, ej = |uj − ũj|.

Lemma 7 (Truncation error for the corrector [23]). Under the same assumptions as those in
Lemma 5, the truncation error of the corrector at time tn+1 is given by

rC
n+1 =

∣∣∣un+1 − (ϕn+1 + umem
n+1 + uloc

n+1)
∣∣∣,

and can be expressed as

rC
n+1 ≤ MTν

2Γ(ν + 2)
h2 +

LhνeP
n+1

Γ(ν + 1)
,

where || f (2)||∞ ≤ M.
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Lemma 8 (Global error for the corrector [23]). Under the same assumptions as those in Lemma 6,
the global error en+1 = |un+1 − ũn+1| is given by

eC
n+1 ≤ Ch2,

given that the starting error eC
1 ≤ Ch2.

Now, using the aforementioned lemmas with the substitutions ϕ(t) = u(0) + 1−ν
B(ν) f (t, u(t)),

dν = ν
B(ν) , we prove the following truncation and global error analyses for the conventional

PCM (14).

Theorem 2 (Truncation error for the predictor ũP
n+1). Let the truncation error of predictor r̃P

n+1
be defined by

r̃P
n+1 = |un+1 − uP

n+1|.

where uP
n+1 = ϕn+1 + umen

n+1 + Uloc
n+1. Under the same assumptions as those in Lemma 5, there

exists a constant C independent of all grid parameters such that

r̃P
n+1 ≤ Ch2.

Proof. Let || f (2)||∞ ≤ M. Then, from (10) and Lemma 5, we have the following inequality:

r̃P
n+1 ≤ |Gn+1|+ |dν|rP

n+1 ≤ 1 − ν

|B(ν)|Mh2 + |dν|rP
n+1 ≤ Ch2.

Theorem 3 (Global error for the predictor ũP
n+1). Under the same assumptions as those in

Lemma 6, the global error for the predictor, ẽP
n+1 = |un+1 − ũP

n+1|, can be estimated by

ẽP
n+1 ≤ r̃P

n+1 +
L(1 − ν)

|B(ν)| [2ẽn + ẽn−1] + C
|dν|Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 ẽj,

where ẽj = |uj − ũj|.

Proof. From (14) and the triangle inequality, we have

ẽP
n+1 ≤|un+1 − uP

n+1|+ |uP
n+1 − ũP

n+1|

≤r̃P
n+1 +

1 − ν

|B(ν)| [2| fn − f̃n|+ | fn−1 − f̃n−1|]

+ |dν|
(

1
Γ(ν)

n−1

∑
j=0

[|Θ0,j
n+1|| f j − f̃ j|+ |Θ1,j

n+1|| f j+1 − f̃ j+1|]

+
hν

Γ(ν + 2)
[| fn−1 − f̃n−1|+ (ν + 2)| fn − f̃n|]

)
From the Lipschitz condition and Lemma 6 combined with the argument of Rn (see Rn in
Theorem 2 [23]), we have

ẽP
n+1 ≤ r̃P

n+1 +
L(1 − ν)

|B(ν)| [2ẽn + ẽn−1] + C
|dν|Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 ẽj.



Fractal Fract. 2024, 8, 65 10 of 25

Theorem 4 (Truncation error for the corrector ũn+1). Under the same assumptions as those in
Theorem 3, let the truncation error at time t = tn+1 be

r̃C
n+1 =

∣∣∣un+1 − (ϕ(tn+1, f P
n+1) + umem

n+1 + uloc
n+1)

∣∣∣.
Then,

r̃C
n+1 ≤ |dν|MTν

2Γ(ν + 1)
h2 +

(
L(1 − ν)

|B(ν)| +
|dν|Lhν

Γ(ν + 1)

)
ẽP

n+1.

Proof. From Lemma 7 and (14), we obtain the following:

r̃C
n+1 ≤ L(1 − ν)

|B(ν)| ẽP
n+1 + |dν|

(
MTν

2Γ(ν + 1)
h2 +

Lhν

Γ(ν + 1)
ẽP

n+1

)
.

Theorem 5 (Global error for the corrector ũn+1). Under the same assumptions as those in
Theorem 3, the global error ẽn+1 = |un+1 − ũn+1| is

ẽn+1 ≤ Ch2 + Cϵ,

given that the starting error ẽ1 ≤ Ch2.

Proof. From Lemma 4 and Theorem 4,

ẽn+1

≤r̃C
n+1 +

L(1 − ν)

|B(ν)| ẽP
n+1 +

L|dν|
Γ(ν)

(|Θ0,n
n+1|ẽn + |Θ1,n

n+1|ẽ
P
n+1) +

L|dν|
Γ(ν)

n−1

∑
j=0

(|Θ0,j
n+1|ẽj + |Θ1,j

n+1|ẽj+1)

≤r̃C
n+1 +

L(1 − ν)

|B(ν)| ẽP
n+1 + |dν|

(
Lhν

Γ(ν + 1)
(ẽn + ẽP

n+1) +
Lhν

Γ(ν)

n−1

∑
j=0

(n − j)ν−1(ẽj + ẽj+1)

)

≤ |dν|MTν

2Γ(ν + 1)
h2 + 2

(
|dν|Lhν

Γ(ν + 1)
+

L(1 − ν)

|B(ν)|

)
ẽP

n+1

+ |dν|
(

Lhν

Γ(ν + 1)
ẽn +

Lhν

Γ(ν)

n−1

∑
j=0

(n − j)ν−1(ẽj + ẽj+1)

)
.

By applying a similar argument to Rn in Theorem 3, we have

Lhν

Γ(ν + 1)
ẽn +

Lhν

Γ(ν)

n−1

∑
j=0

(n − j)ν−1(ẽj + ẽj+1) ≤ C
Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 ẽj. (22)

Using Theorem 3 and Equation (22) implies that

ẽn+1 ≤ |dν|MTν

2Γ(ν + 1)
h2 + Λν

h

(
r̃P

n+1 +
L(1 − ν)

|B(ν)| [2ẽn + ẽn−1]

)
+ C(Λν

h + 1)
|dν|Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 ẽj,

where

Λν
h = 2

(
|dν|Lhν

Γ(ν + 1)
+

L(1 − ν)

|B(ν)|

)
.
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Then, the discrete Gronwall’s inequality yields

ẽn+1 ≤(Q+ Λν
h r̃P

n+1)Eν

(
C|dν|LTν(Λν

h + 1)
)

,

where

Q =
|dν|MTν

2Γ(ν + 1)
h2 + Λν

h

(
L(1 − ν)

|B(ν)| [2ẽn + ẽn−1]

)
Since ẽ1 ≤ Ch2 and r̃P

n+1 ≤ Ch2 in Theorem 2, it is clear that

Q+ Λν
h r̃P

n+1 ≤ Ch2, n ≥ 1.

This completes the proof.

3.2. Global Error Analysis for the Fast PCM

In this section, we discuss the error analysis for the fast PCM in (21). From (19),
we have∣∣∣umem

n+1 − u f mem
n+1

∣∣∣ = |Tϵ
n+1| =

∣∣∣∣∣ϵ dν

Γ(ν)

n−1

∑
j=0

∫ tj+1

tj

Πj f (s, u(s))ds

∣∣∣∣∣ ≤ ϵ
|dν|
Γ(ν)

( max
0≤j≤n

| f j|)nh.

Thus, we have the following:

Lemma 9. For ϵ > 0, suppose that Equation (18) is satisfied. Then,∣∣∣umem
n+1 − u f mem

n+1

∣∣∣ ≤ Dϵ, where D = T
|dν|
Γ(ν)

max
0≤j≤n

| f j|.

Theorem 6 (Global error for the predictor ûP
n+1). Under the same assumptions as those in

Theorem 3, the global error êP
n+1 = |un+1 − ûP

n+1| has the following inequality:

êP
n+1 ≤Ch2 +

L(1 − ν)

|B(ν)| [2ên + ên−1] + C
|dν|Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 êj + D̂ϵ,

where D̂ = T |dν |
Γ(ν) max0≤j≤n | f̂ j|.

Proof. From Theorem 3 and Lemma 9 with umem
n+1 − u f mem

n+1 = Tϵ
n+1, we obtain the following:

êP
n+1 =

∣∣∣un+1 − (ϕ̂n+1 + û f mem
n+1 + Ûloc

n+1)
∣∣∣ ≤ ∣∣∣un+1 − (ϕ̂n+1 + ûmem

n+1 + Ûloc
n+1)

∣∣∣+ ∣∣T̂ϵ
n+1
∣∣

≤Ch2 +
L(1 − ν)

|B(ν)| [2ên + ên−1] + C
|dν|Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 êj + D̂ϵ.

Theorem 7 (Global error for the corrector ûn+1). Under the same assumptions as those in
Theorem 3, the global error ên+1 = |un+1 − ûn+1| is

ên+1 ≤ Ch2 + Cϵ,

given that the starting error ê1 ≤ Ch2.
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Proof. From Theorems 5 and 6 and Lemma 9 , we have

ên+1 ≤
∣∣∣un+1 − (ϕ(tn+1, f̂ P

n+1) + ûmem
n+1 + ûloc

n+1)
∣∣∣+ ∣∣T̂ϵ

n+1
∣∣

≤ |dν|MTν

2Γ(ν + 1)
h2 + Λν

h êP
n+1 + |dν|

(
C

Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 êj

)
+ D̂ϵ.

≤ |dν|MTν

2Γ(ν + 1)
h2 + Λν

h

(
Ch2 +

L(1 − ν)

|B(ν)| [2ên + ên−1]

)
+ C(Λν

h + 1)
|dν|Lhν

Γ(ν)

n

∑
j=1

(n + 1 − j)ν−1 êj + D̂(Λν
h + 1)ϵ.

Then, from the discrete Gronwall’s inequality, we have the following:

ên+1 ≤
(
Q+ CΛν

hh2 + D̂(Λν
h + 1)ϵ

)
Eν

(
C|dν|LTν(Λν

h + 1)
)

.

4. Numerical Results

In this section, we conduct numerical experiments to demonstrate the effectiveness
of our proposed methods and numerically verify the error estimates. Let us define the
following two errors over [0, T]:

• Maximum norm error:
Emax = max

0≤j≤N
|uj − uh

j |.

• Discrete L2 norm error:

Eℓ2 =

(
h

N

∑
j=0

|uj − uh
j |2
) 1

2

,

where uh
j is an approximate solution at time tj.

Throughout this section, ABC-PCM and ABC-FPCM are used to denote the conventional
PCM (14) and the fast PCM (21), respectively. Several numerical demonstrations are
performed to obtain approximate solutions of nonlinear ABC fractional-order initial value
problems and nonlinear reaction-diffusion problems. Moreover, the efficiency of the fast
algorithm is clearly demonstrated in its application to fractional dynamical systems. All
numerical experiments are implemented using Matlab. For simplicity, in all our numerical
experiments, we set the constant B(ν) to a value of 1. In Section 4.1, we present the
numerical results for the nonlinear ABC fractional differential equations in (2). These
results validate our theoretical findings, including the convergence rate, and confirm the
efficiency of our proposed fast algorithms compared to the conventional PCM. We discuss
the extension of our proposed method to fractional partial differential equations. All
pertinent numerical results supporting the efficacy and applicability of our method in this
context are included in Section 4.2. Finally, the numerical efficiency of our fast algorithm is
showcased through its application to various fractional dynamical systems in Section 4.3.

4.1. Nonlinear ABC Fractional-Order Initial Value Problems

Example 1. Consider the following nonlinear problem with u(0) = 0 [20]:

ABCDν
0u(t) + u(t)− u2(t) = t3 −

[
6t3

B(ν) + 1 − ν

(
(1 − ν)Eν,4

(
− νtν

B(ν) + 1 − ν

)
+ νtνEν,ν+4

(
− νtν

B(ν) + 1 − ν

))]2

,

where the solution is u(t) = 6t3

B(ν)+1−ν

[
(1 − ν)Eν,4

(
− νtν

B(ν)+1−ν

)
+ νtνEν,ν+4

(
− νtν

B(ν)+1−ν

)]
.
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Example 2. Consider the following nonlinear problem with u(0) = 1 [20]:

ABCDν
0u(t) + cos(u(t)) =

B(ν)
1 − ν

(
2Γ(5)t4Eν,5

(
− νtν

1 − ν

)
− 3νΓ(2ν + 3)t2ν+2Eν,2ν+3

(
− νtν

1 − ν

)
+ Γ(ν + 3)tν+2Eν,ν+3

(
− νtν

1 − ν

))
+ cos(2t4 − 3νt2(ν+1) + tν+2 + 1),

where the solution is u(t) = 2t4 − 3νt2(ν+1) + tν+2 + 1.

In Examples 1 and 2, we fix B(ν) = 1, T = 1, and ϵ = 10−9. From Tables 3 and 4 and
Figure 1, we can make the following observations:

1. The maximum norm errors, discrete L2 norm errors, and computed convergence rates
versus time steps h = 1/10, 1/20, 1/40, · · · , 1/640 are shown in Tables 3 and 4 for
ν = 0.2, 0.5, 0.8.

2. The numerical results obtained with the ABC-FPCM show little difference from those
obtained with the ABC-PCM.

3. The computed convergence profiles for the maximum norm errors shown in Tables 3
and 4 are approximately 2. Thus, the numerical results support Theorems 5 and 7.

4. The computational costs, obtained by measuring the CPU time (in seconds) executed
by the conventional PCM and the fast PCM versus the total number of steps N on the
log-log scale in Example 2, are depicted in Figure 1. The figure shows that the CPU
consumption rate of the fast PCM is O(N), whereas that of the conventional PCM is
O(N2).

Table 3. Errors and rates of convergence versus h for Example 1 with ϵ = 10−9, ν = 0.2, 0.5, 0.8.

ABC-FPCM ABC-PCM

Emax roc Eℓ2 roc Emax roc Eℓ2 roc

h ν = 0.2

1/10 3.37 × 10−2 - 1.85 × 10−2 - 3.37 × 10−2 - 1.85 × 10−2 -
1/20 9.03 × 10−3 1.90 4.92 × 10−3 1.91 9.03 × 10−3 1.90 4.92 × 10−3 1.91
1/40 1.71 × 10−3 2.40 1.14 × 10−3 2.11 1.71 × 10−3 2.40 1.14 × 10−3 2.11
1/80 3.98 × 10−4 2.10 2.67 × 10−4 2.09 3.98 × 10−4 2.10 2.67 × 10−4 2.09
1/160 9.35 × 10−5 2.09 6.33 × 10−5 2.08 9.35 × 10−5 2.09 6.33 × 10−5 2.08
1/320 2.21 × 10−5 2.08 1.51 × 10−5 2.07 2.21 × 10−5 2.08 1.51 × 10−5 2.07
1/640 5.28 × 10−6 2.07 3.61 × 10−6 2.06 5.28 × 10−6 2.07 3.61 × 10−6 2.06

h ν = 0.5

1/10 7.35 × 10−3 - 4.93 × 10−3 - 7.35 × 10−3 - 4.93 × 10−3 -
1/20 1.55 × 10−3 2.24 1.11 × 10−3 2.15 1.55 × 10−3 2.24 1.11 × 10−3 2.15
1/40 3.53 × 10−4 2.14 2.56 × 10−4 2.11 3.53 × 10−4 2.14 2.56 × 10−4 2.11
1/80 8.24 × 10−5 2.10 6.02 × 10−5 2.09 8.24 × 10−5 2.10 6.02 × 10−5 2.09
1/160 1.95 × 10−5 2.08 1.43 × 10−5 2.07 1.95 × 10−5 2.08 1.43 × 10−5 2.07
1/320 4.70 × 10−6 2.06 3.46 × 10−6 2.05 4.70 × 10−6 2.06 3.46 × 10−6 2.05
1/640 1.14 × 10−6 2.04 8.41 × 10−7 2.04 1.14 × 10−6 2.04 8.41 × 10−7 2.04

h ν = 0.8

1/10 1.82 × 10−3 - 1.38 × 10−3 - 1.82 × 10−3 - 1.38 × 10−3 -
1/20 3.95 × 10−4 2.21 2.99 × 10−4 2.21 3.95 × 10−4 2.21 2.99 × 10−4 2.21
1/40 9.17 × 10−5 2.11 6.84 × 10−5 2.13 9.17 × 10−5 2.11 6.84 × 10−5 2.13
1/80 2.21 × 10−5 2.05 1.62 × 10−5 2.08 2.21 × 10−5 2.05 1.62 × 10−5 2.08
1/160 5.41 × 10−6 2.03 3.93 × 10−6 2.04 5.42 × 10−6 2.03 3.94 × 10−6 2.04
1/320 1.35 × 10−6 2.01 9.68 × 10−7 2.02 1.34 × 10−6 2.01 9.67 × 10−7 2.03
1/640 3.39 × 10−7 1.99 2.41 × 10−7 2.01 3.33 × 10−7 2.01 2.39 × 10−7 2.01
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Table 4. Errors and rates of convergence versus h for Example 2 with ϵ = 10−9, ν = 0.2, 0.5, 0.8.

ABC-FPCM ABC-PCM

Emax roc Eℓ2 roc Emax roc Eℓ2 roc

h ν = 0.2

1/10 5.14 × 10−1 - 2.47 × 10−1 - 5.14 × 10−1 - 2.47 × 10−1

1/20 2.00 × 10−1 1.36 8.53 × 10−2 1.54 2.00 × 10−1 1.36 8.53 × 10−2 1.54
1/40 5.59 × 10−2 1.84 2.29 × 10−2 1.90 5.59 × 10−2 1.84 2.29 × 10−2 1.90
1/80 1.34 × 10−2 2.06 5.56 × 10−3 2.04 1.34 × 10−2 2.06 5.56 × 10−3 2.04
1/160 3.20 × 10−3 2.07 1.36 × 10−3 2.03 3.20 × 10−3 2.07 1.36 × 10−3 2.03
1/320 7.81 × 10−4 2.03 3.36 × 10−4 2.02 7.81 × 10−4 2.03 3.36 × 10−4 2.02
1/640 1.93 × 10−4 2.02 8.31 × 10−5 2.02 1.93 × 10−4 2.02 8.31 × 10−5 2.02

h ν = 0.5

1/10 1.09 × 10−1 - 5.72 × 10−2 - 1.09 × 10−1 - 5.72 × 10−2 -
1/20 2.88 × 10−2 1.93 1.45 × 10−2 1.98 2.88 × 10−2 1.93 1.45 × 10−2 1.98
1/40 6.89 × 10−3 2.06 3.51 × 10−3 2.04 6.89 × 10−3 2.06 3.51 × 10−3 2.04
1/80 1.66 × 10−3 2.05 8.49 × 10−4 2.05 1.66 × 10−3 2.05 8.49 × 10−4 2.05
1/160 4.03 × 10−4 2.04 2.06 × 10−4 2.04 4.03 × 10−4 2.04 2.06 × 10−4 2.04
1/320 9.84 × 10−5 2.04 5.03 × 10−5 2.04 9.84 × 10−5 2.04 5.03 × 10−5 2.04
1/640 2.41 × 10−5 2.03 1.23 × 10−5 2.03 2.41 × 10−5 2.03 1.23 × 10−5 2.03

h ν = 0.8

1/10 4.37 × 10−3 - 2.03 × 10−3 - 4.37 × 10−3 - 2.03 × 10−3 -
1/20 8.14 × 10−4 2.42 3.70 × 10−4 2.46 8.14 × 10−4 2.42 3.70 × 10−4 2.46
1/40 1.51 × 10−4 2.43 6.97 × 10−5 2.41 1.51 × 10−4 2.43 6.97 × 10−5 2.41
1/80 2.94 × 10−5 2.36 1.39 × 10−5 2.32 2.94 × 10−5 2.37 1.39 × 10−5 2.32
1/160 6.05 × 10−6 2.28 2.97 × 10−6 2.23 6.04 × 10−6 2.28 2.96 × 10−6 2.23
1/320 1.29 × 10−6 2.23 6.54 × 10−7 2.18 1.31 × 10−6 2.20 6.63 × 10−7 2.16
1/640 2.74 × 10−7 2.23 1.46 × 10−7 2.17 2.99 × 10−7 2.13 1.54 × 10−7 2.10

103 104 105 106 107
10-2

100

102

104

Figure 1. Log-log plot of CPU time (CT(s)) versus the number of steps N with ν = 0.5 for Example 2.

4.2. Application to Fractional Order PDEs

In this subsection, we discuss the ABC fractional-order reaction-diffusion equation.
The general form of this equation is given by

ABCDν
0u(x, t) = c

∂2u(x, t)
∂x2 + f (x, t, u), x ∈ [as, bs], t ≥ 0,

u(x, 0) = u0(x), u(as, t) = φ(t), u(bs, t) = ψ(t).
(23)
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where 0 < ν < 1 is of fractional order, c ∈ C is the diffusion coefficient, and g is the
nonlinear source term. The approximated solution Un at time tn is denoted as follows:

Un = (un
1 , un

1 , ..., un
M−1)

T , X = {x0 = as, ..., xm = a + mτ, ..., xM = bs} (24)

with the space step size τ = xm − xm−1 for m = 1, ..., M, and the time step size h = tn − tn−1
for n = 1, ..., N, and Fn = f (X, tn, Un). We employ the second-order central difference
quotient to approximate uxx(x, t) at (xm, tn):

u(xm−1, tn)− 2u(xm, tn) + u(xm+1, tn)

τ2 = uxx(x, t)|(x,t)=(xm ,tn) +
uxx(xm, tn)

12
τ2 +O(τ4).

By applying the conventional PCM (14) combined with the second-order central
difference to the sub-diffusion Equation (23), we obtain the following numerical scheme:[

I +
1 − ν

B(ν)
cL +

dν

Γ(ν)
Θ1,n

n+1cL
]

Un+1 = ϕP
n+1 + Umem

n+1 + Uloc,P
n+1 ,[

I +
1 − ν

B(ν)
cL +

dν

Γ(ν)
Θ1,n

n+1cL
]

UP
n+1 = ϕn+1 + Umem

n+1 + Uloc
n+1

(25)

where I is an identity matrix, L is the finite-difference matrix for the space derivative, and

ϕP
n+1 = U0 +

1 − ν

B(ν)
FP

n+1, Uloc,P
n+1 =

dν

Γ(ν)

[
Θ0,n

n+1(cLUn + Fn) + Θ1,n
n+1FP

n+1

]
,

Umem
n+1 =

dν

Γ(ν)

n−1

∑
j=0

[
Θ0,j

n+1
(
cLUj + Fj

)
+ Θ1,j

n+1
(
cLUj+1 + Fj+1

)]
,

ϕn+1 = U0 +
1 + ν

B(ν)
(−Fn−1 + 2Fn), Uloc

n+1 =
dν

Γ(ν)
Θ0,n

n+1cLUn +
dνhν

Γ(ν)
[−Fn−1 + (ν + 2)Fn].

Similarly, the fast PCM for the sub-diffusion equation can be expressed as follows:[
I +

1 − ν

B(ν)
cL +

dν

Γ(ν)
Θ1,n

n+1cL
]

Un+1 = ϕP
n+1 + UFmem

n+1 + Uloc,P
n+1 ,[

I +
1 − ν

B(ν)
cL +

dν

Γ(ν)
Θ1,n

n+1cL
]

UP
n+1 = ϕn+1 + UFmem

n+1 + Uloc
n+1

(26)

where

UFmem
n+1 =

dν

Γ(ν)

Nexp

∑
i=1

ωiFi
n+1,

Fi
n+1 =

n−1

∑
j=0

[
Φ0,j

i,n+1

(
cLUj + Fj

)
+ Φ1,j

i,n+1

(
cLUj+1 + Fj+1

)]
,

= eξihFi
n +

[
Φ0,n−1

i,n+1 (cLUn−1 + Fn−1) + Φ1,n−1
i,n+1 (cLUn + Fn)

]
Now, we apply the PCMs combined with the second-order central difference schemes

(25) and (26) for solving ABC fractional order sub-diffusion PDEs to the following examples.
Although our proposed method is capable of handling an arbitrary diffusion coefficient c,
for simplicity in our simulation, we have chosen to set the diffusion constant to 1.
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Example 3. Consider the linear sub-diffusion problem with f (x, t), which is given by

f (x, t) =
B(ν)
1 − ν

Γ(ν + 4)tν+3Eν,ν+4

(
− νtν

1 − ν

)
e−xx4(x − π)4

− (t3e−x + 1)x2(x − π)2[12(x − π)4 + 32x(x − π) + 12x2]

− t3e−xx3(x − π)3[x(x − π)− 8(x − π)− 8x],

and the corresponding initial boundary conditions are as follows:

u(x, 0) = x4(π − x)4, u(0, t) = 0, u(3, t) = 34(π − 3)4[exp(−3)t3+ν + 1].

Then, u(x, t) = x4(π − x)4[exp(−x)t3+ν + 1] is the exact solution.

Example 4. Consider the nonlinear sub-diffusion problem with f (x, t, u), which is given by

f (x, t, u) =
B(ν)
1 − ν

Γ(5)t4Eν,5

(
− νtν

1 − ν

)
cos(3πx)− 9π2t4 cos(3πx)

− u2 + t8 cos2(3πx),

and the corresponding initial boundary conditions are as follows:

u(x, 0) = 0, u(0, t) = t4, u(1, t) = −t4.

Then, u(x, t) = t4 cos(3πx) is the exact solution.

From Tables 5 and 6, we can make the following observations:

1. Tables 5 and 6 show the maximum norm errors, discrete L2 norm errors, and rates of
convergence versus h and τ with τ = 1/5000 and h = 1/5000 fixed, respectively, for
ν = 0.2, 0.8.

2. Theoretically, the rate of convergence for the second-order central difference quotient
is O(τ2), and the convergence rates for the proposed methods are shown to be 2.
Thus, the global order of convergence for both (25) and (26) is expected to be 2 when
either τ or h is fixed. In the tables, one can see that the rates of convergence computed
by the ABC-FPCM and ABC-PCM are approximately 2 in both cases where τ is fixed
and h is fixed. This verifies that the global estimates of our proposed methods are
valid in solving sub-diffusion FPDEs.

3. The gap between the CPU time executed by the ABC-PCM and that executed by
the ABC-FPCM is evident in the tables. Particularly, the difference between them
drastically increases as h = 1/5000 is fixed. This verifies that the proposed fast PCM
is more efficient compared to the conventional PCM.

Table 5. Errors and rates of convergence versus h when τ = 1/5000 and versus τ when h = 1/5000
for Example 3.

ν = 0.2 ν = 0.8

ABC-FPCM ABC-PCM ABC-FPCM ABC-PCM

τ = 1/5000

h Emax roc CT(s) Emax roc CT(s) Emax roc CT(s) Emax roc CT(s)

1/10 1.81 × 10−3 - 1.017 1.81 × 10−3 - 1.101 1.52 × 10−2 - 1.005 1.52 × 10−2 - 1.149
1/20 4.96 × 10−4 1.87 1.975 4.96 × 10−4 1.87 2.639 3.82 × 10−3 1.99 2.115 3.82 × 10−3 1.99 2.508
1/40 1.33 × 10−4 1.89 3.866 1.33 × 10−4 1.89 4.971 9.57 × 10−4 2.00 3.935 9.57 × 10−4 2.00 4.648
1/80 3.56 × 10−5 1.91 7.997 3.56 × 10−5 1.91 10.120 2.40 × 10−5 2.00 8.206 2.40 × 10−5 2.00 10.139
1/160 9.59 × 10−6 1.89 15.985 9.59 × 10−6 1.89 25.011 6.02 × 10−5 1.99 15.744 6.02 × 10−5 1.99 20.843

h = 1/5000

τ Emax roc CT(s) Emax roc CT(s) Emax roc CT(s) Emax roc CT(s)

1/10 9.67 × 10−2 - 3.761 9.67 × 10−2 - 62.772 1.00 × 10−1 - 3.875 1.00 × 10−1 - 61.249
1/20 2.42 × 10−2 2.00 7.065 2.42 × 10−2 2.00 70.675 2.51 × 10−2 2.00 7.113 2.51 × 10−2 2.00 69.826
1/40 6.05 × 10−3 2.00 13.893 6.05 × 10−3 2.00 90.210 6.27 × 10−3 2.00 13.590 6.27 × 10−3 2.00 86.519
1/80 1.51 × 10−3 2.00 26.930 1.51 × 10−3 2.00 121.949 1.57 × 10−3 2.00 26.398 1.57 × 10−3 2.00 119.277
1/160 3.78 × 10−4 2.00 29.859 3.78 × 10−4 2.00 153.570 3.92 × 10−4 2.00 21.083 3.92 × 10−4 2.00 155.221
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Table 6. Errors and rates of convergence versus h when τ = 1/5000 and versus τ when h = 1/5000
for Example 4.

ν = 0.2 ν = 0.8

ABC-FPCM ABC-PCM ABC-FPCM ABC-PCM

τ = 1/5000

h Emax roc CT(s) Emax roc CT(s) Emax roc CT(s) Emax roc CT(s)

1/10 1.19 × 10−2 - 0.101 1.19 × 10−2 - 0.079 7.64 × 10−3 - 0.101 7.64 × 10−3 - 0.069
1/20 3.44 × 10−3 1.79 0.165 3.44 × 10−3 1.79 0.123 1.96 × 10−3 1.97 0.162 1.96 × 10−3 1.97 0.131
1/40 9.07 × 10−4 1.92 0.368 9.07 × 10−4 1.92 0.324 4.79 × 10−4 2.03 0.290 4.79 × 10−4 2.03 0.312
1/80 2.31 × 10−4 1.98 0.628 2.31 × 10−4 1.98 0.690 1.17 × 10−4 2.03 0.608 1.17 × 10−4 2.03 0.720
1/160 5.79 × 10−5 1.99 1.207 5.79 × 10−5 1.99 1.807 2.89 × 10−5 2.02 1.183 2.89 × 10−5 2.02 1.797

h = 1/5000

τ Emax roc CT(s) Emax roc CT(s) Emax roc CT(s) Emax roc CT(s)

1/10 1.12 × 10−1 - 0.834 1.12 × 10−1 - 48.032 1.08 × 10−1 - 0.720 1.08 × 10−1 - 53.056
1/20 2.70 × 10−2 2.06 0.642 2.70 × 10−2 2.06 53.879 2.60 × 10−2 2.05 0.779 2.60 × 10−2 2.05 52.112
1/40 6.71 × 10−3 2.01 0.959 6.71 × 10−3 2.01 60.800 6.47 × 10−3 2.01 0.971 6.47 × 10−3 2.01 60.103
1/80 1.68 × 10−3 2.00 1.391 1.68 × 10−3 2.00 69.584 1.62 × 10−3 2.00 1.479 1.62 × 10−3 2.00 64.850
1/160 4.20 × 10−4 2.00 2.493 4.20 × 10−4 2.00 81.508 4.04 × 10−4 2.00 2.515 4.04 × 10−4 2.00 75.244

We apply the proposed methods to time-dependent PDEs in two dimensions. The
authors of [37] discussed the finite-difference scheme for the predator–prey interaction in
the two-dimensional space for the integer-order case. We aim to solve this model equipped
with time-fractional derivatives, specifically the predator–prey reaction-diffusion systems
with the Holling type I I functional response and logistic growth of the prey. These systems
are described below.

Example 5. Consider the two-component reaction-diffusion equation system [37]:
Dν

0u = ∆u + u(1 − |u|)− uv
|u|+ a

,

Dν
0v = δ∆v +

buv
|u|+ a

− cv,

where 0 < ν ≤ 1, and the parameters a, b, and c are strictly positive. Dν
0 denotes the Liouville–Caputo

FD (1) or ABC FD. Its initial conditions are given by

u0(x, y) = u∗ − 2 × 10−7(x − 0.1y − 225)(x − 0.1y − 675),

v0(x, y) = v∗ − 3 × 10−5(x − 450)− 1.2 × 10−4(y − 150),

where the stationary solution (u∗, v∗) is (ab/(b − c), (1 − u∗)(u∗ + a)), and zero-flux boundary
conditions are applied.

The suggested methods (25) and (26) can be extended to solve this example through
the following setting:

Un = (un
0 , un

1 , ..., un
m, ..., un

M)T , un
m = (un

0m, un
1m, ..., un

Mm)
T

and the matrix L and the parameters a = 0.4, b = 2.0, c = 2.0, and δ = 1 are defined in [37].
We measure the CPU times of the suggested methods and investigate the effects of the

types of fractional derivatives and fractional orders. We make the following observations:

1. Table 7 shows the CPU times for Scheme 2 in [37], the ABC-PCM, and the ABC-FPCM
for Example 5. To measure the rate of the CPU time, the time T increases twice from
T=125 to 1000, and we can observe that the rate of the CPU time for Scheme 2 and the
ABC-FPCM is O(N), whereas for the ABC-PCM, it is O(N2).

2. Furthermore, the ABC-FPCM is much more efficient in terms of memory management
compared to the existing method because it requires storing all previous values (Un,
LUn, and Gn) to calculate Un+1 by using the ABC-PCM efficiently. On the other hand,
the APC-FPCM requires only local values.

3. Figure 2 shows the effect of fractional order and types of fractional derivatives for
T = 250, 500, 1000, h = 1/3, L = 400, and τ = 1. The first row depicts the evolution
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of the system for ν = 1. We can see that the spiral pattern is broken when T = 250,
and an irregular pattern appears when T = 500, 1000.

4. The second and third rows describe the evolution of the system for the ABC and
Liouville–Caputo fractional derivatives of order ν = 0.98, respectively. In the
fractional-order system, similar to the case of ν = 1, the spiral pattern is broken
over time.

5. In addition, in the fractional systems, a spiral pattern exists at T = 250, 1000, but the
spiral pattern disappears at T = 1000. This phenomenon is similar to the case where
ν = 1, T = 250, and has a wider pattern.

6. It can be seen that the solution of the problem equipped with the ABC derivative is slower
and wider than the solution of the problem equipped with the Liouville–Caputo derivative.

Figure 2. Comparison of numerical solution of Example 5 at T = 250, 500, 1000 with the parameters
a = 0.4, b = 2.0, c = 0.6, δ = 1, L = 400, τ = 1, and h = 1/3. Each row represents ν = 1, ν = 0.98
with the Liouville–Caputo FD, and ν = .98 with the ABC FD.

Table 7. CPU times of the fractional-order predator–prey interaction (5) with the parameters a = 0.4,
b = 2.0, c = 0.6, δ = 1, L = 400, τ = 1, and h = 1/3.

T 125 250 500 1000

Scheme 2 [37] 17.03 35.22 74.13 155.21
ABC-PCM 52.41 149.55 495.41 1668.56
ABC-FPCM 55.23 109.69 223.01 547.09
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4.3. Application to Fractional Dynamical Systems

Here, we discuss the application to fractional dynamical systems. Recently, many
researchers have studied fractional-order dynamical systems due to the memory effect.
However, fractional-order dynamical systems consume excessive computational time
compared to integer-order systems when drawing bifurcation diagrams with fixed points
and extrema. We apply our fast PCM to plot bifurcation diagrams for the fractional-order
Rössler dynamical system with the Liouville–Caputo FD and ABC FD. We aim to discuss
the efficiency of the fast PCM and the influence of the definition of FD applied. First, we
recall the fractional-order Rössler system:

Example 6. The fractional-order Rössler system [38] is defined as
Dν

0 x = −y − z,

Dν
0y = x + ay,

Dν
0z = b + z(x − c),

where 0 < ν ≤ 1 is the fractional order; x, y, z are the state variables; and a, b, c are the parameters.
Dν

0 denotes the Liouville–Caputo FD (1) or ABC FD. If ν = 1, it becomes the integer-order Rössler
system and is well known.

In this example, we show comparisons of the CPU times using the classical PCM and
the fast PCM to obtain the bifurcation diagrams of the local maximum of y versus a for
the Liouville–Caputo and ABC fractional Rössler systems, respectively. The parameters
are set to ν = 0.98, b = 4, c = 4, h = 1/100, and T = 1200 for the numerical simulations.
The bifurcation diagrams for the Liouville–Caputo fractional Rössler system obtained
by the ABC-FPCM (Figure 3a) and the ABC-PCM (Figure 3b) when parameter a varies
from 0.38 to 0.5 are shown in Figure 3. Figure 4 shows the bifurcation diagrams for
the ABC fractional system computed by the ABC-FPCM (Figure 4a) and the ABC-PCM
(Figure 4b), as parameter a ranges from 0.38 to 0.6, where the increment in parameter a
in both systems is set to ∆a = 0.0002. It can be observed that the fast PCM significantly
reduces the computational cost. For the Liouville–Caputo Rössler system, the CPU time for
the ABC-FPCM is only 19 min, whereas that of the ABC-PCM is 2 days, 12 h, and 32 min.
For the ABC system, the ABC-FPCM takes 1 h and 7 min, whereas the ABC-PCM takes four
days, 21 h, and 2 min. This confirms that the proposed fast PCM has superior performance
and efficiency compared to the conventional PCM.

0.38 0.4 0.42 0.44 0.46 0.48 0.5
-0.5

0

0.5

1

1.5

2

2.5

(a) Fast method (19 min)

0.38 0.4 0.42 0.44 0.46 0.48 0.5
-0.5

0

0.5

1

1.5

2

2.5

(b) Conventional method (2 days, 12 h, 32 min)

Figure 3. Bifurcation diagrams for Rössler system with the Liouville–Caputo FD, 0.38 ≤ a ≤ 0.5.
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0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
0

0.5

1

1.5

2

2.5

(a) Fast method (1 h, 7 min)

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
0

0.5

1

1.5

2

2.5

(b) Conventional method (4 days, 21 h, 2 min)

Figure 4. Bifurcation diagrams for Rössler system with the ABC FD, 0.38 ≤ a ≤ 0.6.

5. Conclusions

In this paper, we have introduced two distinct predictor-corrector methods (PCMs)
for solving ABC fractional differential equations: the conventional PCM, based on linear
interpolation, and the fast PCM, enhanced by the sum-of-exponentials (SOEs) approximation
of t−β.

Our findings demonstrate that although the fast PCM achieves linear time complexity
O(N), the conventional PCM operates with quadratic time complexity O(N2), as illustrated
numerically by the CPU time in Figure 1.

We have established truncation and global error estimates, and the uniform accuracy
order of O(h2) was empirically verified across Examples 1 through 4. Our methods were
applied to a range of problems, including nonlinear ABC fractional-order differential
problems, ABC fractional-order sub-diffusion PDEs, and the fractional-order Rössler
dynamical system with both the ABC FD and Liouville–Caputo FD. Of particular note is the
application to the fractional Rössler dynamical system, where the fast PCM demonstrated
significant potential in reducing computational costs. This efficiency is especially valuable
in the analysis of bifurcation diagrams for various values of ν in fractional dynamical
systems, a topic we plan to explore further in subsequent work.

While our methods have shown promising results, we acknowledge certain limitations.
The scope of comparison with the existing literature was constrained due to the unique nature
of our methods, particularly in the context of ABC PDEs. In future research, we aim to extend
our comparative analysis and explore the full potential of our methods in a broader range of
applications. Additionally, we plan to address the practical implications and applications of
our fast PCM in analyzing bifurcation diagrams in fractional dynamical systems in more depth,
which could open new avenues in the study of complex dynamical behaviors.

In conclusion, our work represents a significant step forward in the computational handling
of ABC fractional differential equations. We have achieved our initial objectives of developing
efficient computational methods and have laid a foundation for future explorations that could
further enhance the understanding and application of these methods in complex systems.
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Appendix A. Additional Information on the Sum-of-Exponentials Approximation

In this section, we describe the method for reducing the number of exponentials. Here,
we introduce the balanced truncation method (BTM). It is one of the model reduction
methods used for linear time-invariant (LTI) systems. First, we explain the motivation for
using this method. Our objective is to create a reduced model of the LTI system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (A1)

where A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n. The vectors x ∈ Rn, u ∈ Rp, and y ∈ Rq are the
state variables, input variables, and output variables, respectively. The transfer function is
G(s) = C(sI − A)−1B. We want to find the reduced system as (Ar, Br, Cr), i.e.,

ẋr(t) = Arxr(t) + Bru(t), y(t) = Cxr(t)

where Ar ∈ Rk×k, Br ∈ Rk×p, and Cr ∈ Rq×k. Before describing this method, let us
intuitively observe why it can be used to reduce the number of quadratures. We set
A = −diag(η1, ..., ηNexp), C =

√
(ζ1, ..., ζNexp), and B = CT , where ηi’s and ζi’s are the

quadrature nodes and weights, respectively. The transfer function is given by

G(s) =
Nexp

∑
i=1

ζi
s − (−ηi)

= L
{Nexp

∑
i=1

e−Tηi

}
(s) (A2)

where T = tp. Note that this is the Laplace transform of our sum-of-exponentials
approximation. So, we find the reduced form:

Ĝ(s) =
k

∑
i=1

ζ̂i
s − (−η̂i)

, k ≪ Nexp, (A3)

By applying the inverse Laplace transform, we obtain the reduced SOE approximation
L−1{Ĝ}(T) = ∑k

i=1 ζ̂ie−Tη̂i . Therefore, we can use this method to reduce the number of
quadratures. Now, we state some important definitions and theorems.

Definition A1 ([39]). When determining the specific situation of the system, we use Gramians.
As an example, Gramians are used to determine whether a system is controllable or reachable. The
reachability Gramian and the observability Gramian of the system (A1) are defined as follows:

• The reachability Gramian

P :=
∫ t f

0
eτABBTeτAT

dτ. (A4)

• The observability Gramian

Q :=
∫ t f

0
eτACTCeτAT

dτ. (A5)

where t f is a fixed final time. Assume that A is asymptotically stable and t f = ∞. In this case, P
and Q are the solutions of the following Lyapunov equations:

AP + PAT + BBT = 0 (A6)

ATQ + QA + CTC = 0. (A7)
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If the system (A1) is asymptotically stable and minimal, the two Lyapunov
equations (A6) and (A7) have unique symmetric positive definite solutions.

Definition A2 ([40]). The square roots of the eigenvalues (singular values) of the product PQ are
the so-called Hankel singular values of the system (A1):

σi =
√

λi(PQ). (A8)

There are some important properties of the Hankel singular values:

• σi are basis independent.
• In a lot of instances, not only the eigenvalues of P and Q but also the Hankel singular values

decrease very quickly.
• Note that one of properties of the balanced basis is that hard-to-reach states are hard to observe.

Therefore, we obtain the reduced model by using the Hankel singular values, except for the
small ones.

Table A1. The number of exponentials and relative errors for the approximation of t−β with T = 1.

δ 10−2 10−3 10−4 10−5

ϵ Nexp Erel Nexp Erel Nexp Erel Nexp Erel

Theorem 1

10−3 84 2.85 × 10−10 119 2.74 × 10−11 147 2.87 × 10−11 182 2.91 × 10−11

10−6 182 5.29 × 10−16 238 6.15 × 10−16 308 7.97 × 10−16 378 9.39 × 10−16

10−9 273 8.01 × 10−16 378 1.07 × 10−15 462 1.10 × 10−15 567 1.30 × 10−15

β = 0.2

10−3 15 1.01 × 10−4 19 9.18 × 10−5 23 1.11 × 10−4 27 1.14 × 10−4

10−6 26 1.60 × 10−7 32 1.50 × 10−7 39 9.14 × 10−8 46 1.21 × 10−7

10−9 37 1.10 × 10−10 47 8.56 × 10−11 54 7.89 × 10−11 64 1.16 × 10−10

β = 0.5
10−3 14 1.62 × 10−4 19 1.52 × 10−4 22 1.72 × 10−4 26 1.75 × 10−4

10−6 25 3.23 × 10−7 31 2.99 × 10−7 38 1.57 × 10−7 45 2.20 × 10−7

10−9 36 2.12 × 10−10 46 1.64 × 10−10 53 1.44 × 10−10 62 2.10 × 10−10

β = 0.8

10−3 14 3.19 × 10−4 18 2.96 × 10−4 21 3.35 × 10−4 25 3.41 × 10−4

10−6 25 6.46 × 10−7 30 5.62 × 10−7 37 3.56 × 10−7 43 4.48 × 10−7

10−9 35 5.44 × 10−10 44 4.22 × 10−10 52 4.47 × 10−10 61 4.31 × 10−10

Table A2. The number of exponentials and relative errors for the approximation of t−β with δ = 10−2.

T 10 102 103 104

ϵ Nexp Erel Nexp Erel Nexp Erel Nexp Erel

Theorem 1

10−3 98 2.85 × 10−10 119 2.74 × 10−11 133 2.74 × 10−11 147 2.74 × 10−11

10−6 210 6.09 × 10−16 238 6.15 × 10−16 280 6.15 × 10−16 308 6.15 × 10−16

10−9 336 8.84 × 10−16 378 1.07 × 10−15 420 1.07 × 10−15 462 1.07 × 10−15

β = 0.2

10−3 16 2.24 × 10−4 19 1.48 × 10−4 21 2.33 × 10−4 23 1.76 × 10−4

10−6 29 1.15 × 10−7 32 2.78 × 10−7 36 2.51 × 10−7 39 1.89 × 10−7

10−9 42 1.39 × 10−10 47 1.14 × 10−10 50 2.16 × 10−10 54 2.20 × 10−10

β = 0.5

10−3 16 3.89 × 10−4 19 3.37 × 10−4 20 6.79 × 10−4 22 5.16 × 10−4

10−6 29 2.54 × 10−7 31 6.58 × 10−7 35 8.26 × 10−7 38 6.23 × 10−7

10−9 41 2.77 × 10−10 46 2.56 × 10−10 49 5.90 × 10−10 53 7.82 × 10−10

β = 0.8

10−3 15 7.04 × 10−4 18 4.08 × 10−4 19 1.23 × 10−3 21 9.38 × 10−4

10−6 28 5.32 × 10−7 30 1.05 × 10−6 34 1.66 × 10−6 37 1.27 × 10−6

10−9 40 6.80 × 10−10 44 6.08 × 10−10 48 1.27 × 10−9 52 1.70 × 10−9

In order to obtain the reduced system, the following theorem is crucial:

Theorem A1 ([41]). Assume that the asymptotically stable, minimal realization (A, B, C) of the
full-order model transfer function, G(s) = C(Is − A)−1B, is internally balanced, i.e.,
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AΛ + ΛAT + BBT = 0, (A9)

ATΛ + ΛA + CTC = 0, (A10)

where Λ = diag{σi}, σ1 ≥ σ2 ≥ · · · ≥ σn and σis are the Hankel singular values of the system. If
we obtain the reduced model with the following transfer function

Ĝ(s) = C1(Is − A11)
−1B1,

where A11 ∈ Rk×k, B ∈ Rk×p, and C ∈ Rq×k, the model reduction error is bounded

∥G(s)− Ĝ(s)∥H∞ ≤ 2
n

∑
i=k+1

σi. (A11)

where ∥ · ∥H∞ = supz∈iR | · | is the L∞ norm for the transfer function.

We use the square-root method described in Algorithm A1. In our case, we use
S = UPΣ1/2

P and L = UQΣ1/2
Q instead of the Cholesky factors of P and Q because they are

sometimes not positive-definite matrices in the numerical sense (i.e., they have some very
small negative eigenvalues −10−16 ≲ λi < 0). Moreover, the singular values of LST are
also the Hankel singular values of the system (A1). Therefore, we can obtain the reduced
system with the desired error ϵ using the balanced truncation method.

Tables A1 and A2 show the number of exponentials Nexp and the relative error Erel for
the approximations of t−β with some ϵ, T, δ > 0. To show the effectiveness of the balanced
truncation method in Algorithm A1, we set M̂ = ⌈log(log(1/ϵ)) + log(1/δ2) + log T⌉+ 1
and n = ⌈log(1/ϵ)⌉ in Theorem 1. When the error bound ϵ becomes smaller, the number
of exponentials Nexp also increases. It can be observed that the relative error Erel is much
smaller than the lowest value of ϵ using the method in Theorem 1. However, it is worth
noting that the balanced truncation method in Algorithm A1 controls the number of
exponentials Nexp with respect to the error bound ϵ. From the results in the tables, we can
verify that the model reduction method significantly reduces the number of exponentials
Nexp. It should be noted that the number of exponentials Nexp in Theorem 1 is almost
independent of the value of β in approximating t−β.

Algorithm A1: Balanced truncation method [42]
Data: The desired error ϵ, quadrature points η = (η1, η2, · · · , ηN), and weights

ζ = (ζ1, · · · , ζN).
Result: Reduced quadrature points η̂ and weights ζ̂.
Set A = −diag(η), C =

√
ζ, and B = CT ;

Solve two Lyapunov equations AP + PAT + BBT = 0 and AQ + QAT + CTC = 0;
Compute two singular-value decompositions of P = UPΣPVP and Q = UQΣQVQ ;
Set S = UPΣ1/2

P and L = UQΣ1/2
Q ;

Compute a singular-value decomposition of LST = UΣV, where
Σ = diag(σ1, · · · , σN);

Find k such that 2 ∑N
j=k+1 σj ≤ ϵ;

Form a N × k matrix J, where Jii = σ−1/2
i , i = 1, · · · , k and Jij = 0 otherwise;

Set Tl = LTUJ and Tr = STV J;
Set Â = TT

l ATr , B̂ = TT
l B, and Ĉ = CTr;

Compute the eigenvalue decomposition of Â = XΛX−1;
Set η̂ = (Λ11, · · · , Λkk) ;
Form B̃ = X−1B̂T and C̃ = ĈX;
Set ζ̂ = (B̃iC̃i)

k
i=1;
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