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I 

 

Abstract 

Polycyclic aromatic hydrocarbons (PAHs) are well-known contaminants due to their toxicity and high 

emission from incomplete combustion of organic materials. Previous studies mostly focused on the 

United States Environment Protection Agency priority 16 PAHs; however, other more toxic PAHs have 

been also found in ambient air (i.e., dibenz[a,i]pyrene (DbaiP), dibenz[a,h]pyrene (DbahP), and 

dibenz[a,l]pyrene (DbalP)). In this study, gaseous and particulate phases of 21 atmospheric PAHs were 

collected in three seasons (December 2013–August 2014) at a residential site in Ulsan, South Korea. 

The samples (n=64) were extracted by Soxhlet extractors, cleaned up using silica gel columns, and then 

analyzed using a gas chromatograph/mass spectrometer (GC/MS).  

The mean Σ21 PAH concentrations were 13.06 ng/m3, 7.67 ng/m3, and 6.03 ng/m3 in winter, spring, and 

summer, respectively. The gaseous concentrations of Σ21 PAHs (mean: 7.39 ng/m3) were higher than the 

particulate ones (mean: 2.70 ng/m3). The contribution of the Σ8 PAHs which are not listed as the US 

EPA priority PAHs to the Σ21 PAH were 5.21%, and they were mostly partitioned in the particulate phase. 

The particulate PAHs (4-, 5-, and 6-ring species) were dominant in winter, whereas the gaseous PAHs 

(3- and 4-ring species) were dominant in summer. 

In order to identify the emission sources of PAHs, diagnostic ratios, principle component analysis, and 

a hybrid receptor model (i.e., concentration weighted trajectory) were used. As a result, pyrogenic 

sources (e.g., wood/coal and natural gas combustion) were the primary sources in winter. Petrogenic 

sources and petrogenic combustion were dominant in summer, reflecting that PAHs could be transported 

from industrial areas by seasonal winds. In spring, PAHs were emitted by both petrogenic and pyrogenic 

sources. In addition, PAHs could be affected by vehicle emission in all seasons. Moreover, the 

concentration weighted trajectory revealed that PAHs in winter and spring could be contributed by 

PAHs emitted from regional areas (i.e., China and North Korea).  

The exposure-risk probability distribution calculated using Monte Carlo simulation suggested that the 

cancer risks of Σ21 PAHs and Σ13 PAHs did not exceed the guideline of the US EPA (10-6). However, 

high TEFs of DbaiP and DbahP contributed to the increased cancer risk of Σ21 PAHs than that of Σ13 

PAHs although they showed low concentrations in the ambient air. Therefore, it is necessary to 

investigate for various kinds of PAHs and evaluate their health impact. This is a preliminary study for 

monitoring and health risk assessment of 21 PAHs in South Korea. 
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Ⅰ. INTRODUCTION 

 

Polycyclic aromatic hydrocarbons (PAHs), a group of chemicals that have two or more benzene rings 

constituted of carbon and hydrogen in their structure, have been extensively studied due to their 

potential carcinogenic, teratogenic, and mutagenic properties (IARC, 2004; 2010). Based on their 

carcinogenicity and mutagenicity, there are 16 species of PAHs have been classified by the United States 

Environment Protection Agency as priority pollutants: naphthalene (Nap), acenaphthylene (Acy), 

acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene 

(Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene 

(BkF), benzo[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene (Ind), dibenzo[a,h]anthracene (DahA), 

benzo[g,h,i]perylene (BghiP). Among these US EPA 16 priority PAHs, the International Agency for 

Research on Cancer (IARC) considers BaP a carcinogen to humans (group 1) and BaA and DahA 

probable carcinogens to humans (group 2A) (IARC, 2010; 2012). However, hundreds of other PAHs as 

well as these US EPA 16 priority PAHs exist in the environment, and some of them have higher toxicity 

levels than those of the priority PAHs. For example, dibenz[a,l]pyrene (DbalP) is classified into group 

2A. Also, benzo[c]phenanthrene (BcPhe), benzo[j[fluoranthene (BjF), dibenz[a,i]pyrene (DbaiP), and 

dibenz[a,h]pyrene (DbahP) are classified into a group of possibly carcinogen to human (group 2B). 21 

PAHs including the US EPA 13 priority PAHs investigated in this study are shown in Figure 1. 

To estimate the detrimental health effects of a mixture of chemicals that have similar structure, the 

toxicity equivalency factor (TEF) methodology was developed by US EPA and adapted for PAH 

compounds (Nisbet and Lagoy, 1992; US-EPA, 1993). TEF presents the relative toxicity of individual 

PAH compounds compared to BaP, which has been well characterized toxicologically (Table 1). The 

evaluation of toxicity for US EPA priority PAHs are well established, while studies for other PAH 

compounds are very limited (Andersson and Achten, 2015). For example, DbalP, DbaiP, DbahP are 10 

times more carcinogenic than BaP (Andersson and Achten, 2015; OEHHA, 1994), but only DbalP is 

classified into group 2A. In the cases of 7,12-Dimethylbenz[a]anthracene (DMBA) and 3-

Methylcholanthrene (3MCA), they have expected potencies 21.8 and 1.9 times greater in laboratory 

animals than BaP (Collins et al., 1998; OEHHA, 1994) even though they are no classified in the IARC. 

In particular, DMBA and 3MCA is widely used to control cancer in laboratory experiments. 
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Figure 1. Chemical structures of the PAHs investigated in this study. 
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Table 1. Name, abbreviation, IARC classification, and TEF values of 21 PAHs. 

Compound Abbreviation 
IARC 

Classification*a 
TEF 

Fluorene** Flu 3 0.001c 

Phenanthrene** Phe 3 0.001c 

Antracene** Ant 3 0.01c 

Fluoranthene** Flt 3 0.001c 

Pyrene** Pyr 3 0.001c 

Benzo[c]phenanthrene BcPhe 2B -c 

Banz[a]anthracene** BaA 2B 0.1c, d 

Chrysene** Chr 2B 0.01c, d 

Benzo[b]fluoranthene** BbF 2B 0.1c, d 

Benzo[j]fluoranthene BjF 2B 0.1d 

Benzo[k]fluoranthene** BkF 2B 0.1c, d 

7,12-Dimethylbenz[a]anthracene DMBA - 21.8*d 

Benzo[e]pyrene BeP 3 -c 

Benzo[a]pyrene** BaP 1b 1c, d 

3-Methylcholanthrene 3MCA - 1.9*d 

Indeno[1,2,3-cd]pyrene** Ind 2B 0.1c, d 

Dibenz[a,h]anthracene** DahA 2A 1c 

Benzo[g,h,i]perylene** BghiP 3 0.01c 

Dibenz[a,i]pyrene DbaiP 2B 10d 

Dibenz[a,h]pyrene DbahP 2B 10d 

Dibenz[a,l]pyrene DbalP 2A 10d 

*Classification system: Group 1: carcinogenic to humans, Group 2A: Probably carcinogenic to humans, Group 2B: Possibly 

carcinogenic to humans, Group 3: Not classifiable as to its to humans 

**US EPA 13 priority PAHs 

a (IARC, 2010) 

b (IARC, 2012) 

c (Nisbet and Lagoy, 1992) 

d (OEHHA, 1994) 
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The PAHs are produced by natural processes such as forest fire and volcanic eruptions. However, the 

majority of these pollutants are anthropogenic process: coal and biomass burning, oil and natural gas 

combustion, and industrial processes (Mostert et al., 2010). Also, PAHs are emitted from petrogenic 

sources such as oil spillages or leakages (da Silva and Bícego, 2010). Each PAH in the atmosphere 

behaves differently due to its different physicochemical properties. The low-molecular weight PAHs 

which consist of 2- or 3- benzene rings, tend to exist in the gaseous phase because they have a high 

vapor pressure, whereas the high-molecular weight PAHs, which contain 5- or 6- rings, tend to bind to 

particles in the atmosphere. The physicochemical properties (i.e., formula, molecular weight, water 

solubility, vapor pressure, octanol/water partition coefficient (KOW)) are shown in Table 2. 
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Table 2. Physiochemical properties including formula, molecular weight, vapor pressure, water solubility, and Log KOW of the target PAHs at 25 °C 

(Mackay et al., 2006a).  

Compound CAS No. Abbrev. Formula 
Molecular 

weight (g/mol) 

Vapor pressure 

(mmHg) 

Water solubility 

(mg/L) 
Log Kow 

Fluorene 86-73-7 Flu C13H10 166.2185 6.E-04 1.9 4.18 

Phenanthrene 85-01-8 Phe C14H10 178.2292 1.E-04 4.57 4.46 

Antracene 120-12-7 Ant C14H10 178.2292 6.E-06 0.045 4.63 

Fluoranthene 206-44-0 Flt C16H10 202.2506 9.E-06 0.26 4.85 

Pyrene 129-00-0 Pyr C16H10 202.2506 5.E-06 0.132 4.9 

Benzo[c]phenanthrene 195-19-7 BcPhe C18H12 228.2879    

Banz[a]anthracene 56-55-3 BaA C18H12 228.2879 2.E-07 0.011 5.61 

Chrysene 218-01-9 Chr C18H12 228.2879 6.E-09 0.0015 5.73 

Benzo[b]fluoranthene 205-99-2 BbF C20H12 252.3093 5.E-07 0.0015 5.78 

Benzo[j]fluoranthene 205-82-3 BjF C20H12 252.3093  0.0025 0.0099 

Benzo[k]fluoranthene 207-08-9 BkF C20H12 252.3093 1.E-10 0.0008 5.94 

7,12-Dimethylbenz[a]anthracene 57-97-6 DMBA C20H16 256.3410  0.05 5.94 

Benzo[e]pyrene 192-97-2 BeP C20H12 252.3093  0.004  

Benzo[a]pyrene 50-32-8 BaP C20H12 252.3093 6.E-09 0.0038 6.31 

3-Methylcholanthrene 56-49-5 3MCA C21H16 268.3517  0.0019 6.42 

Indeno[1,2,3-cd]pyrene 193-39-5 Ind C22H12 276.3307 5.E-10 0.00019 6.72 

Dibenz[a,h]anthracene 53-70-3 DahA C22H14 278.3466 1.E-09 0.0006 6.88 

Benzo[g,h,i]perylene 191-24-2 BghiP C22H12 276.3307 1.E-10 0.00026 7.04 

Dibenz[a,i]pyrene 189-55-9 DbaiP C24H14 302.3680    

Dibenz[a,h]pyrene 189-64-0 DbahP C24H14 302.3680    

Dibenz[a,l]pyrene 191-30-0 DbalP C24H14 302.3680    
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Ulsan is a large industrial city located on the southeastern part of South. There are 2 massive industrial 

areas in east and southeast Ulsan: Mipo National Industrial Area and Onsan National Industrial Area, 

which together are comprised of petrochemical, non-ferrous, automobile, and shipbuilding production 

industries (Figure 2). Residents in Ulsan are likely to be affected by emissions of PAHs because 

residential areas are close to these industrial complexes. Generally, previous studies have been reported 

that the levels and characteristics of the PAHs in Ulsan is various seasonally depending on seasonal 

winds (Choi et al., 2012b; Nguyen et al., 2018). In winter and spring, winds blow towards the east sea, 

moving PAHs emitted from industrial areas to out of sea. Concentrations of PAHs tend to be highest in 

winter due to increased fossil fuel combustion for residential heating and decline of atmospheric 

dispersion. On the other hand, the levels of PAHs in spring are influenced more by yellow sand and 

long-range transport from the Northeast Asia (i.e., China and North Korea) (Thang et al., 2019). In 

summer, PAHs originated from industrial areas in Ulsan can move toward residential areas by 

southeasterly winds (Choi et al., 2012b; Clarke et al., 2014; Nguyen et al., 2018). The wind fields and 

wind roses during the sampling event are shown in Figure 3. 

 

 

Figure 2. Industrial areas and activities in Ulsan, South Korea. The arrows show the prevailing wind 

direction in winter and summer. 
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Figure 3. Wind fields and wind roses of (a) winter, (b) spring, and (c) summer in Ulsan. 

 

The aims of this study were to investigate the seasonal concentrations, profiles and phase distribution 

of 21 PAHs in the atmosphere in Ulsan. In addition, the emission sources of these PAHs and the effects 

of long-range transport were identified seasonally. Finally, cancer risk induced by exposure of the 21 

PAHs including US EPA 13 priority PAHs via inhalation was studied.
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Ⅱ. MATERIALS AND METHOD 

 

2.1 Ambient air sampling 

Air samples were collected at the rooftop of the Yeongnam air quality monitoring station, Ulsan, South 

Korea (35°34'52.36"N, 129°19'27.15"E). The Yeongnam air quality monitoring station is located at a 

residential area in the north and northwestern part of the urban and industrial districts in Ulsan (Figure 

4). Sampling was conducted for three seasons (December 2013–August 2014). A high-volume air 

sampler (Sibata, HV-700F, Japan) was used to collect PAHs samples in the gaseous and particulate 

phases once a week. The total air volume of each sample was 1007.9 m3 (flow rate: 700 L/min). Samples 

in the gaseous and particulate phase PAHs were collected using glass fiber filters (GFFs, adantec, Japan) 

and polyurethane foam disks (PUFs, Ziemer chromatographie, Germany), respectively.  

The GFFs were baked at 400 °C for 4 h and the PUF disks were cleaned by sonication prior to sampling 

for 30 min with acetone and n-hexane, respectively. The cleaned GFFs and PUFs were kept in aluminum 

foil prior to sampling. The GFF and PUF samples after sampling were stored at -9 °C wrapped in 

aluminum foil and polyurethane zippered bags until analysis. 
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2.2 Analytical procedure 

Prior to extraction, surrogate standard (naphthalene-d8 (Nap-d8), acenaphthylene-d10 (Ace-d10), 

phenanthrene-d10 (Phe-d10), chrysene-d12 (Chr-d12), and perylene-d12 (Per-d12)) was added to all 

samples and PAHs collected on GFFs and PUFs were extracted by Soxhlet extractor for 20 h with 350 

mL of n-hexane/acetone (9:1). The extracts were concentrated to 10 mL using a Turvo vap (Caliper, 

USA) and then cleaned up on a silica gel column containing 2 g of anhydrous sodium sulfate, 5 g of 

activated silica gel (4 h at 130 °C), and 2 g of anhydrous sodium sulfate with 70 mL of n-

hexane/dichloromethane (9:1). The effluents were concentrated to 0.5 mL using Turvo Vap and nitrogen 

evaporator (Eyela, Japan). These final extracts were carried to gas chromatography (GC) vial, and then 

an internal standard (p-terphenyl-d14) was spiked to the vial prior to instrumental analysis.  

Among the target 24 PAHs, naphthalene, acenaphthylene, and acenaphthene were excluded in this study 

because of their low recoveries, potential sampling artifacts, and blank contamination. An Agilent 

7890A gas chromatograph interface with an Agilent 5975C mass spectrometer (GC/MS, Agilent, USA) 

equipped with a DB-5MS capillary column (30 m × 0.25 m i.d., 0.25 µm film thickness) was used for 

the analysis. One µL of the final sample was injected into the GC in splitless mode at 300 °C of inlet 

temperature. The GC was operated under selected ion monitoring (SIM) mode and the carrier gas was 

helium (He) at a flowrate of 1.0 mL/min. The GC oven temperature was as follows: started at 60 °C for 

1 min, increased at 10 °C/min until 320 °C, and finally held at 320 °C for 8 min.  
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Figure 4. Analytical procedural for PAHs in GFFs and PUFs samples. 
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2.3 Quality assurance and quality control (QA/QC) 

Field blank samples were collected to correct the contamination of sample during all processes from 

sampling to analysis (e.g. field, shipping to the laboratory, storage, pretreatment and analysis). The 

concentrations of PAHs were corrected by average blank value (n=10). Average recoveries of the PUF 

samples were 61%, 95%, and 85% and those of the GFF samples were 78%, 99%, and 100% for Phe-

d10, Chr-d12, and Per-d12, respectively. Method detection limit (MDL) of the gaseous and particulate 

PAHs were calculated by the following equation: 

𝑀𝐷𝐿 = 𝑆𝐷 × 3.14          (1) 

where SD indicates the standard deviation of 7 replicates of spiked blank samples and 3.14 is the 

Student’s t value for a 99% confidence level. Values of MDL ranged from 0.01 ng/m3 to 0.13 ng/m3 for 

PUFs and from 0.02 ng/m3 to 0.08 ng/m3 for GFFs. Concentrations of PAHs below the MDLs were 

treated as non-detects (NDs) and substituted with half of MDL values. 
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Table 3. MDL (ng/m3), IDL (ng/m3), and detection frequencies (%) of PAHs in total samples. 

 MDL (ng/m3) 

IDL (ng/m3) 

Detection frequency (%) 

 PUF GFF PUF GFF 

Flu 0.07 0.03 0.004 94% 3% 

Phe 0.08 0.05 0.001 100% 53% 

Ant 0.07 0.05 0.002 63% 0% 

Flt 0.10 0.07 0.019 100% 66% 

Pyr 0.12 0.07 0.020 100% 69% 

BcPhe 0.08 0.05 0.006 0% 25% 

BaA 0.08 0.04 0.002 3% 50% 

Chr 0.08 0.05 0.004 22% 69% 

Bb+jF 0.09 0.03 0.003 0% 81% 

BkF 0.09 0.06 0.005 0% 63% 

DMBA 0.06 0.04 0.012 0% 0% 

BeP 0.08 0.04 0.004 0% 78% 

BaP 0.13 0.06 0.007 0% 63% 

3MCA 0.08 0.04 0.022 0% 0% 

Ind 0.07 0.03 0.007 0% 81% 

DahA 0.07 0.06 0.008 0% 13% 

BghiP 0.07 0.04 0.004 3% 75% 

DbaiP 0.07 0.06 0.007 0% 0% 

DbahP 0.03 0.03 0.010 0% 3% 

DbalP 0.01 0.02 0.013 0% 0% 
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2.4 Statistical analysis 

Statistical analysis has been used for analysis and interpretation of data. A Spearman correlation analysis 

among PAHs in ambient air, TSP, PM10, and PM2.5 was conducted to identify their respective 

relationships. In addition, a Shapiro-Wilk normality test and a Mann-Whitney rank sum test were 

conducted using SigmaPlot 12.0 (Systat Software Inc, USA). A principle component analysis (PCA) 

was conducted to understand pollution characteristics and estimate sources of the PAHs. The normalized 

PAH concentration data with only high detective frequencies (> 50%) were chosen for input data. The 

rotation method was varimax and eigenvalues greater than one were used for the PC extraction criterion. 

SPSS 20.0 software (IBM, USA) was used to perform the Spearman correlation analysis and PCA. 

 

2.5 Backward trajectory analysis and concentration weighted trajectory (CWT) 

Backward trajectory analysis, which is produced by the Hybrid Single-Particle Lagrangian Integrated 

Trajectory (HYSPLIT) model (https://www.ready.noaa.gov/HYSPLIT.php) has been used to analysis 

movement of airmass and effect of long-range transport of PAHs (Sofuoglu et al., 2013; Tang et al., 

2014; Zhang et al., 2017). In this study, the backward trajectories of 72 h were calculated using the 

averaged data of every one hour for each 24 h sample (from 11:00 a.m. local time). The starting height 

of trajectories was 500 m above the ground. A total of 768 trajectories was obtained since the number 

of sampling day was 52 for three seasons. The input data for HYSPLIT model were listed in Table 4 

and backward air trajectories during sampling period were illustrated in Figure 5. 

 

Table 4. Input data of HYSPLIT model.  

Data Contents 

Location Yeong-Nam monitoring station 

Coordinate 35°34'52.36"N, 129°19'27.15"E 

Study period Sampling date 

Trajectory period 72 hours 

Height 500 m above ground level 
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Figure 5. Backward air trajectories arriving at Ulsan, South Korea. The red point present Yeongnam 

air quality monitoring station.  

 

The hybrid receptor models have been used estimate the source areas of air pollutants. Concentration 

weighted trajectory (CWT) assigns weighted concentration of pollutants that have associated 

trajectories to each cell based on the below equation: 

𝐶𝑊𝑇𝑖𝑗 =
1

∑ 𝜏𝑖𝑗𝑙
𝐿
𝑙=1

∑ 𝐶𝑙𝜏𝑖𝑗 𝑙
𝐿
𝑙=1         (2) 

where CWTij denotes the CWT value of the cell i, j, Cl is the PAH concentration, L is the total backward 

trajectory line number, and τijl is endpoint number of backward trajectory l in grid cell i, j (Hsu et al., 

2003). TrajStat was used to calculate the CWT (Wang et al., 2009). The domain of CWT was 110°–

140°E and 25°–50°N with the grid cell of 0.5°×0.5°. The arbitrary weighted function W(nij) was 

considered to reduce the effect of the small number of trajectories passing through the i, j grid cell, nij. 

The weighting function W(nij) are expressed by Equ. (3): 

𝑊(𝑛𝑖𝑗) =

{
 
 

 
 

1,                    𝑛 ≥ 2𝑎𝑣
0.75,               2𝑎𝑣 ≥ 𝑛 ≥ 𝑎𝑣

0.5,               𝑎𝑣 ≥ 𝑛 ≥
𝑎𝑣

2

0.2,                         
𝑎𝑣

2
≥ 𝑛

         (3) 

where n denotes the number of trajectory endpoints in each grid cell, and the av is the average number 

of trajectory endpoints per cell. 

(a) Winter (b) Spring (c) Summer
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2.6 Health risk assessment 

The potential cancer risk of the PAHs via inhalation were evaluated. In advance, the concentration of 

individual PAHs could be converted to its BaP equivalent concentration (BaPeq) using below equation: 

𝐵𝑎𝑃𝑒𝑞 = C × TEF          (4) 

where BaPeq is the BaP concentration of each compound (ng/m3); C is the concentration of individual 

PAHs (ng/m3); TEF is toxic equivalent factor (TEF). The TEFs of 21 PAHs were listed in Table 1. 

The incremental lifetime cancer risk (ILCR) model was used to calculate the potential carcinogenicity 

of the PAHs via inhalation following the equation:  

ILCR = (ISF ×  BaPeq ×  IR ×  EF ×  ED ×  cf) / (BW ×  AT)    (5) 

where ISF (mg/kg/day) is inhalation slope factor, IR (m3/h) is inhalation rate, EF (day/year) and EP 

(year) denote the exposure frequency and exposure duration, respectively. cf (10-6) is the conversion 

factor. BW (kg) and AT (days) represent the body weight and averaging time, respectively. The cancer 

risk of Σ21 PAHs and Σ13 PAHs were calculated to estimate increase of cancer risk for Σ21 PAHs than 

those for Σ13 PAHs. However, high uncertainty was expected for the values in Equ. (5). Therefore, 

Monte Carlo simulation was used to decrease the uncertainty of estimations using Crystal Ball 11.1 

(Oracle, USA) with 10,000 iteration. The risk parameters used in this study are shown in Table 5. 
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Table 5. Input data of Monte Carlo simulation to estimate cancer risk through inhalation. 

Variable Name Unit 

Value  Data distribution 

Reference 

Winter Spring Summer  Winter Spring Summer 

BaPeq_13 BaPeq (Σ13 PAHs) ng/m3 A (0.48, 0.35) A (0.22, 0.13) A (0.11, 0.04)  normal normal normal this study 

BaPeq_21 BaPeq (Σ21 PAHs) ng/m3 A (0.61, 0.44) A (0.27, 0.15) A (0.17, 0.12)  normal log-normal log-normal this study 

BW Body weight kg G (62.8, 10.9)  log-normal 
MOE (2007); 

NIER (2016a)  

EF Exposure factor day/year G (252, 1.01)  log-normal 
Chen and Liao 

(2006) 

ED Exposure duration year U (0, 52)  uniform this study 

AT Averaging time day 22,550  constant 
Nguyen et al. 

(2020) 

IR Inhalation rate m3/h A (14.3, 1.1)  log-normal 
MOE (2007); 

NIER (2016a) 

ISF 
Inhalation slope 

factor for BaP 
mg/kg/day 3.9  constant CalEPA (2009) 

A (m, sd): Arithmetic mean and standard deviation 

G (gm, gsd): Geometric mean and standard deviation 

U (min, max): Minimum and maximum data 
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Ⅲ. RESULTS AND DISCUSSION 

 

3.1 Monitoring of 21 PAHs 

3.1.1 Levels and trends of PAHs 

The range and mean concentrations of PAHs in gaseous, particulate, and total (gaseous + particulate) 

phases over the sampling period are listed in Table 6. The total concentrations of PAHs were in the 

range of 1.46–17.56 (mean: 7.40) ng/m3 for the gaseous, 0.28–12.78 (mean: 2.72) ng/m3 for the 

particulate, and 1.84–29.72 (mean: 10.11) ng/m3 for the total phases, respectively. The 3-ring PAHs (Flu, 

Phe, and Ant) were detected in all PUF samples, but only 34% of Flu, 84% of Phe, and 62% of Ant 

were detected in the GFF samples. The 4-ring PAHs, except for DMBA, were highly detected in both 

PUF and GFF samples. The 5- and 6-ring PAHs, except for 3MCA, were frequently detected in the GFF 

rather than the PUF samples. DMBA and 3MCA, which are known not to be originated from 

environment source (Collins et al., 1998), were absent in all samples.  
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Table 6. Range and mean concentrations (ng/m3) of the gaseous, particulate, and total (gas + particle) 

PAHs for entire sampling period in Ulsan. 

Ring No. Compounds 
 Gas  Particle  Total 

 Range mean  Range mean  Range mean 

3 Flu  ND–6.69 1.30  ND–0.04 0.01  0.01–6.71 1.30 

3 Phe  0.37–7.69 3.69  ND–0.79 0.10  0.39–8.10 3.79 

3 Ant  ND–0.75 0.16  ND–0.03 0.02  0.01–0.78 0.17 

4 Flt  0.37–2.25 1.17  ND–2.28 0.40  0.45–4.04 1.57 

4 Pyr  0.21–2.54 0.97  ND–1.77 0.32  0.38–2.76 1.29 

4 BcPhe  - 0.01  ND–0.28 0.06  0.04–0.29 0.07 

4 BaA  N.D.–0.11 0.01  ND–0.60 0.10  0.01–0.61 0.11 

4 Chr  N.D.–0.19 0.03  ND–1.22 0.23  0.04–1.23 0.26 

5 Bb+jF  - 0.01  ND–1.50 0.32  0.02–1.50 0.32 

5 BkF  - 0.01  ND–0.72 0.16  0.03–0.73 0.17 

4 DMBA  - ND  - ND  - ND 

5 BeP  - 0.01  ND–1.18 0.28  0.02–1.19 0.29 

5 BaP  - 0.01  ND–0.56 0.13  0.03–0.58 0.14 

5 3MCA  - ND  - ND  - ND 

6 Ind  - 0.01  ND–1.20 0.27  0.02–1.21 0.28 

5 DahA  - 0.00  ND–0.10 0.03  ND–0.10 0.03 

6 BghiP  ND–0.22 0.01  ND–1.01 0.27  0.03–1.02 0.28 

6 DbaiP  - ND  - ND  - ND 

6 DbahP  - 0.00  ND–0.03 0.00  ND–0.03 0.00 

6 DbalP  - ND  - ND  - ND 

 Σ21 PAHs  1.46–17.56 7.40  0.28–12.78 2.72  1.84–29.72 10.11 
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Figure 6 shows the PAH concentrations in three seasons. The mean Σ21 PAH concentrations were highest 

in winter (mean: 13.06 ng/m3), followed by spring (7.67 ng/m3) and summer (6.03 ng/m3). The results 

of t-test and rank-sum test demonstrated the difference between winter and other seasons (p = 0.012 

between winter and spring, p < 0.001 between winter and summer). This pattern is in accordance with 

previous studies (Ichikawa et al., 2018; NIER, 2016b; 2018; 2019). This seasonal trend was shared for 

the gaseous (winter: 7.48 ng/m3, spring: 5.57 ng/m3, and summer: 5.35 ng/m3) and particulate (winter: 

5.57 ng/m3, spring: 2.21 ng/m3, and summer: 0.68 ng/m3) PAHs. Generally, increased fuel combustion 

for heating and less dispersion in the atmosphere due to low temperature and low mixing height lead to 

the elevated levels of PAHs in winter. On the other hand, in summer, high atmospheric temperature and 

solar radiation induce photodegradations between PAHs and atmospheric oxidants (Baek et al., 1991). 

Moreover, an increase of the mixing layer and a lack of major PAHs sources or residential combustions 

for heating could explain for the lowest level of PAHs in summer (Nguyen et al., 2018). 

 

  

Figure 6. Seasonal concentrations of the total Σ21 PAHs in (a) the gaseous, (b) particulate, and (c) 

total (gaseous + particulate) phases. 

 

The sum of 8 PAHs (BcPhe, BjF, DMBA, BeP, 3MCA, DbaiP, DbahP, and DbalP) in the total (gaseous 

+ particulate) phase ranged from 0.07 to 2.23 ng/m3 (mean: 0.53 ng/m3) and contributed highest in 

winter (6.3%), followed by spring (5.2%) and summer (2.6%) (Figure 7). In addition, the particulate 

fraction (19.0%) of the Σ8 PAHs was more dominant compared to the gaseous one (0.3%). These Σ8 

PAHs, consisting of middle- and high-molecular weight PAHs, tends to be partitioned in the particulate 

phase. Additionally, similar seasonal trends between the Σ8 PAHs and the US EPA priority Σ13 PAHs 

indicate that the Σ8 PAHs might be influenced by similar emission sources to the Σ13 PAHs. 

The Σ21 PAH concentrations in residential areas of several countries were compared with those in this 

study and shown in Table 7. Only a few studies have investigated the concentrations of 21 PAHs in the 

ambient air. The concentration of particulate Σ21 PAHs (2.70 ng/m3) observed in this study were lower 
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than those found in other sites in South Korea (Yeongam-Gun: 22.3 ng/m3, Gwangju: 3.93 ng/m3, 

Daejeon: 6.21 ng/m3) and similar to those in Japan (2.86 ng/m3). The PAH concentrations in the both 

particulate and gaseous phases were higher than those in Sweden (6.44 ng/m3) and Canada (6.57 ng/m3), 

and lower than those in Uganda (27.7 ng/m3). The proportion of Σ8 PAHs among Σ21 PAHs (18.6%) in 

the particulate phase were lower than those of the other residential sites in South Korea (Yeongam-Gun: 

23.4%, Gwangju: 25.0%, Daejeon: 28.3%), and comparable to those in Japan (19.9%) and Sweden 

(17.7%).  

 

  

Figure 7. Concentrations of US EPA Σ13 PAHs and other Σ8 PAHs not listed at the priority PAHs in (a) 

the gaseous, (b) particulate, and (c) total (gas + particle) phases.  
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Table 7. Comparison of total Σ21 PAHs, US EPA Σ13 PAHs, other Σ8 PAHs, and ratio of Σ13 PAHs/ Σ8 PAHs between this study and previous studies. 

Country Location Sampling period Sample type Σ21 PAH Σ13 PAHa Σ8 PAHb Σ8 PAH/Σ21 PAH Reference 

Japan Chiba Jun 2016–Oct 2017 PM2.5 2.86 2.29 0.57 19.9% Ichikawa et al. (2018) 

Canada Alberta Jan 2012–Dec 2013 TSP and PUF 6.57 6.13 0.44 6.70% Hsu et al. (2015) 

Uganda Entebbe Oct 2008–Jul 2010 TSP and PUF 27.7 26.8 0.94 3.39% Arinaitwe et al. (2012) 

Sweden* Stockholm Oct 2012–Dec 2013 PUF 5.47 5.44 0.02 0.45% Masala et al. (2016) 

Sweden* Stockholm Oct 2012–Dec 2013 TSP 0.97 0.80 0.17 17.7% Masala et al. (2016) 

South Korea  Yeongam-Gun Aug 2015–May 2016 TSP 22.3 1.79 0.55 23.4% NIER (2016b) 

South Korea  Gwangju Jan 2018–Sep 2018 TSP 3.93 2.85 0.98 25.0% NIER (2018) 

South Korea  Daejeon Oct 2018–Jun 2019 TSP 6.21 4.45 1.76 28.3% NIER (2019) 

South Korea  Ulsan Nov 2013 - Aug 2014 TSP 2.70 2.20 0.50 18.6% This study 

South Korea  Ulsan Nov 2013 - Aug 2014 PUF 7.39 7.37 0.02 0.30% This study 

South Korea  Ulsan Nov 2013 - Aug 2014 TSP and PUF 10.1 9.57 0.53 5.21% This study 

* 21 PAHs except for DMBA and 3MCA 

a 16 US EPA PAHs except for Nap, Acy, and Ace 

b BcPhe, BjF, DMBA, BeP, 3MCA, DbaiP, DbahP, and DbalP 
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The PAHs showing the detected frequencies greater than 50 % were used to analyze their correlation to 

particulate matter (i.e., TSP, PM10, and PM2.5). The results of Spearman correlation analysis among each 

PAH compound and Σ21 PAHs in gaseous phase and particulate phase, TSP, PM10, and PM2.5 were shown 

in Table 8 and 9, respectively. PM10 and PM2.5 concentrations were measured at Yeongnam air quality 

monitoring station (35°34'52.36"N, 129°19'27.15"E) using beta ray attenuation method (BAM 1020, 

USA). The sum of Σ21 PAHs in gaseous phase showed strong correlation with each compounds except 

for Chr, suggesting the behavior of gaseous PAHs is governed by 3-ring PAHs and some of 4-ring PAHs 

(Flt and Pyr), having relatively low-molecular-weight (< 203). The particulate PAHs has strong 

correlation with Σ21 PAHs as well as each other, suggesting the common pollution sources of PAHs. 

Moreover, the particulate Σ21 PAHs had positive correlation with TSP, PM10, and PM2.5. Among 

particulate matters, the particulate Σ21 PAHs showed the strongest correlation with TSP, followed by 

PM10, and PM2.5. Since the Σ21 PAHs contains all PAH species from 3- to 6-ring, the particulate Σ21 

PAHs showed the strongest correlation with TSP.    
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Table 8. Spearman correlations among gaseous PAHs, TSP, PM10, and PM2.5 during three sampling seasons. 

  Flu Phe Ant Flt Pyr Chr ΣPAHs TSP PM10 PM2.5 

Flu 1.000 .759** .645** .554** .200 .031 .802** -.023 .101 .105 

Phe   1.000 .775** .868** .703** .361* .974** .020 .086 .086 

Ant     1.000 .828** .654** .359* .842** -.008 -.097 .010 

Flt       1.000 .879** .511** .899** .105 .130 .170 

Pyr         1.000 .567** .691** .006 -.018 .080 

Chr           1.000 .337 .294 .278 .286 

ΣPAHs             1.000 .017 .062 .097 

*Correlation is significant at the 0.05 level. 

**Correlation is significant at the 0.01 level. 
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Table 9. Spearman correlations among particulate PAHs, TSP, PM10, and PM2.5 during three sampling seasons. 

 Phe Flt Pyr BaA Chr BbjF BkF BeP BaP Ind DahA BghiP ΣPAHs TSP PM10 PM2.5 

Phe 1.000 .583** .602** .561** .575** .562** .510** .496** .671** .544** .624** .538** .669** .442* 0.334 0.348 

Flt  1.000 .986** .861** .974** .906** .907** .917** .876** .920** .603** .916** .922** .414* .429* .438* 

Pyr   1.000 .890** .984** .932** .895** .921** .888** .937** .610** .921** .952** .452** .431* .414* 

BaA    1.000 .905** .886** .850** .836** .877** .891** .608** .851** .916** 0.273 0.295 0.273 

Chr     1.000 .938** .909** .937** .900** .941** .623** .927** .951** .445* .446* .444* 

BbjF      1.000 .946** .965** .932** .987** .626** .967** .972** .527** .491** .444* 

BkF       1.000 .966** .910** .953** .623** .973** .920** .418* .457* .444* 

BeP        1.000 .898** .967** .607** .988** .938** .483** .481** .457* 

BaP         1.000 .930** .668** .920** .931** .506** .506** .496** 

Ind          1.000 .646** .980** .963** .475** .494** .458* 

DahA           1.000 .622** .671** 0.276 .375* .495* 

BghiP            1.000 .948** .483** .510** .470* 

ΣPAHs             1.000 .497** .461* .419* 

*Correlation is significant at the 0.05 level. 

**Correlation is significant at the 0.01 level. 
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3.1.2 Phase distributions and profiles 

The annual mean gaseous and particulate Σ21 PAHs concentrations were 7.39 ng/m3 and 2.70 ng/m3, 

respectively. The mean gaseous Σ21 PAHs concentration was approximately 2.7 times higher than the 

particulate one (Mann-Whitney rank sum test, p ≤ 0.001). In general, the high mobility of gaseous PAHs 

could lead the shorter half-life of gaseous PAHs than the particulate ones (Ravindra et al., 2008). 

Moreover, photochemical degradation during transport of gaseous PAHs in the atmosphere causes their 

decrease levels at the receptors (Choi et al., 2012a). Therefore, the high concentrations of gaseous PAHs 

in this study can be explained by the effects of local emission sources. The contribution of particulate 

PAHs was greatest in winter (34.3%), followed by spring (25.1%) and summer (11.1%) (Figure 8). 

Added to this, the proportion of particulate PAHs in winter and spring were statistically different from 

those in summer (Mann-Whitney rank-sum test, p < 0.05). This is probably due to as increase of PAH 

emissions as well as TSP concentrations in winter (mean: 99.8 µg/m3) and spring (mean: 145.7 µg/m3) 

than those in summer (mean: 79.9 µg/m3) from residential heating or long-range transport during winter 

and spring. Moreover, the high temperature and sunlight intensity in summer change the gas/particle 

distribution of PAHs, resulting in a shift of particulate PAHs towards the gaseous phase (Esen et al., 

2008; Kiss et al., 1998).  

 

 

Figure 8. (a) The concentrations and (b) phase distributions of Σ21 PAHs shown in monthly and 

seasonal variations. 
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Figure 9 illustrates the profiles of Σ21 PAHs in the gaseous, particulate, and total phases. The 

concentrations of PAH species in the gaseous, particulate, and total phase are shown in Figure 10. For 

the gaseous phase, the 3-ring (69.5%) and 4-ring (29.7%) PAHs were predominant, in particular, the 

fractions of 3-ring PAHs increased in winter compared to those in summer (winter: 21.8%, spring: 

33.2%, winter: 39.6%). For the particulate phase, the concentration of PAHs decreased dramatically but 

this trend was not observed for the ring fractions. The 4-ring PAHs were most abundant (41.7%), 

followed by the 5-, 6-, and 3-ring PAHs (33.3%, 20.3%, and 4.6%, respectively). Notably, the 5- and 6-

ring PAHs were obviously contributed in the particulate phase due to the sorption of PAHs to particle 

matters. This result is consistent with previous studies (Choi et al., 2012a; Nguyen et al., 2018). 
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Figure 9. Monthly and seasonal variations of the PAHs shown in ring number groups: (a) concentrations and (b) fractions in the gaseous, particulate, and 

total phases. 
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Figure 10. Concentrations of each PAH species in (a) the gaseous, (b) particulate, and (c) total 

(gaseous + particulate) phases in three sampling seasons. 
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3.2 Source identification of 21 PAHs 

3.2.1 Source identification 

The PCA results for gaseous and particulate PAHs in three seasons are shown in Figure 11. In order to 

avoid detection limit artifacts (Choi et al., 2012b), the compounds over 50% of detection frequency 

(gaseous PAHs: Flu, Phe, Ant, Flt, Pyr, and Chr, particulate PAHs: Phe, Ant, Flt, Pyr, BcPhe, BaA, Chr, 

Bb+jF, BkF, BeP, BaP, IchP, DahA, and BghiP) were used as input data.  

As a result, the gaseous PAHs in spring and summer were not separated, suggesting that they might be 

affected by similar emission sources. These PAHs located at right side of the score plot (Figure 11a), 

and characterized by Phe, Flt, Pyr, and IchP. Previous studies reported that Phe, Flt, and Pyr are good 

markers for incineration source (de Andrade et al., 2010). Additionally, Flt and Ind are related to 

combustion of lubricating oil (Daisey et al., 1986). The samples in winter were well separated from 

other seasons, and had strong loadings of Flu and Ant which could be originated from wood combustion 

(Fang et al., 2004).  

The particulate PAHs in winter were located at the left and upper sides, characterized by Flt, Pyr, BcPhe, 

BaA, Chr, and BaP (Figure 11c). BaA and BaP are typical tracers for gasoline and diesel emission (de 

Andrade et al., 2010; Harkov and Greenberg, 1985), while BaA and Chr have been attributed to natural 

gas combustion (Rogge et al., 1993; Simcik et al., 1999). Flt and Pyr are makers for the grass burning 

(Simoneit, 2002). Especially, BcPhe is positioned beside BaP, suggesting BcPhe might be generated by 

same sources of BaP. The particulate PAHs in spring were located right and bottom side, characterized 

by Bb+jF, BeP, Ind, and BghiP. BeP and BbF are generated from natural-gas home burning (Rogge et 

al., 1993), Ind and BghiP are related to automotive vehicle emission (de Andrade et al., 2010; Kulkarni 

and Venkataraman, 2000). Notably, some of the samples were overlapped with the winter samples, 

denoting that PAHs in these seasons were influenced by same emission sources. On the other hand, all 

the summer samplers were spread out, reflecting that various sources (e.g., petrochemical, non-ferrous 

metal, and heavy industries) could affect PAHs at the receptor site (Choi et al., 2012b; Nguyen et al., 

2018). Briefly, PAHs in winter were associated with vehicle emission and residential heating and those 

in spring and summer were influenced by traffic emission and industrial activities. 
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Figure 11. 3-D scatter plot of PCA results: (a) score and (b) loading plots for gaseous PAHs and (c) 

score and (d) loading plots for particulate PAHs. 
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Figure 12 presents diagnostic ratios of gaseous and particulate PAHs during three seasons. Flt/(Flt+Pyr) 

ratio is frequently used to separate petrogenic and pyrogenic sources (Yunker et al., 2002). PAHs 

originated from petrogenic sources are characterized by the ratio less than 0.5, on the other hand, those 

originated form pyrogenic sources are characterized by the ratio more than 0.5. A ratio of Flu/(Flu+Pyr) 

> 0.5 accounts for coal and biomass combustion, while the ratio between 0.4 and 0.5 accounts for 

petroleum combustion and the ratio less than 0.4 indicates petroleum sources. As shown in Figure 12a, 

the gaseous PAHs in summer might be emitted from petrogenic source, whereas those in winter were 

obviously originated from pyrogenic sources.  

The ratio of Ind/(Ind+BghiP) could discriminate petroleum combustion from coal and biomass burning 

(Yunker et al., 2002). The BaA/(BaA+Chr) ratio could distinguish petrogenic (< 0.2), coal combustion 

(0.2–0.35), and vehicular emissions (> 0.35) (Akyuz and Cabuk, 2010; Yunker et al., 2002). These two 

ratios suggested that pyrogenic sources (e.g., coal/biomass burning) were dominant in winter and 

various pyrogenic sources including petroleum, coal and biomass combustion were dominant in spring. 

Furthermore, both pyrogenic and petrogenic sources were identified in summer. Therefore, both 

gaseous and particulate PAHs in summer were emitted from petrogenic sources and transported by 

southeasterly wind passing through industrial complexes (Figure 3). In addition, those in winter were 

obviously originated from pyrogenic sources, especially coal and biomass burning for residential 

heating.  

 

 

Figure 12. Diagnostic ratios of PAHs in (a) the gaseous and (b) particulate phases: (a) Flu/(Flu + Pyr) 

versus Flt/(Flt + Pyr) and (b) Ind/(Ind + BghiP) versus BaA/(BaA + Chr). 
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Since atmospheric BaP decomposes faster than BeP by photochemical reaction, the BeP/BaP ratio 

indexes the aging of PAHs (Lee et al., 2011; Thang et al., 2019). This ratio can also suggest the emission 

sources; for instance, 1.1–13 for gasoline vehicle, 2–2.5 for diesel exhaust, 0.84–1.6 for coal 

combustion, and 0.44 for biomass burning (Simcik et al., 1999). Previous studies mentioned that 

BeP/BaP should be considered carefully because the diversity of combustion sources and the effects of 

aging could influence the ratio (Lee et al., 2006). 

The trend of BeP/BaP ratios in the particulate phase is presented in Figure 13. The ranges of the ratio 

in winter, spring, and summer respectively were 0.75–6.19 (mean: 2.23±1.53), 0.71–3.98 (mean: 

2.10±1.04), and 0.75–3.62 (mean: 1.79±1.13). As shown in Table 10, the BeP/BaP ratios in Ulsan in 

winter were similar with those in Gwangju and Daejeon, South Korea and Guangzhou, China, whereas 

the values in this study were higher than those in Seoul, Gosan, Daesan, and Yeongam-Gun, South 

Korea, Shinzuoka, Japan, Xian and Beijing, China, and Mumbai, India. The air parcel could pass China 

and North Korea prior to arriving in Ulsan (Figure 5), suggesting that PAH in Ulsan could be affected 

by long-range transport. Therefore, the high BeP/BaP values in winter could indicate the increase of 

long-range transport effect. In spring, the BeP/BaP ratio in Ulsan were higher than the other regions in 

South Korea except for Gwangju, suggesting that longer residence time of air parcels (Figure 5) could 

increase the ratio of BeP/BaP in Ulsan. Especially, the air trajectories in the two samples with high 

BeP/BaP ratio passed the northeastern and eastern China, supporting the long-range transport effect in 

winter and spring. 

In summer, the endpoints of backward air trajectories were located above the Yellow Sea, East Sea, 

North Korea, and South Korea, indicating PAHs in Ulsan might be affected more by local emission 

sources than long-range transport (Figure 5). In addition, high temperature and solar radiation could 

reduce the residence time of atmospheric PAHs, supporting the local source effect. The BeP/BaP ratios 

in summer were mostly in range of gasoline and diesel emissions, suggesting that vehicle emission were 

PAH sources. The BeP/BaP values in Ulan were similar to those in Seoul. Previous studies reported that 

these values in Seoul could suggest the effect of vehicular emissions in summer (Lee et al., 2011; Lee 

et al., 2008). Shortly, the BeP/BaP ratio in Ulsan could suggest that PAHs in winter and spring could be 

affected by long-range transport, whereas those in summer were mostly contributed by the local 

emissions (i.e., vehicle emission). 
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Figure 13. Temporal variations of BeP/BaP ratios and Σ21 PAHs concentrations during the sampling 

period. 
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Table 10. Comparison of BeP/BaP ratios from selected Asian countries. 

Country Location Site type Winter Spring Summer Reference 

South Korea Ulsan residential 2.2±1.5 (0.7–6.2) 2.1±1.0 (0.7–4.0) 1.8±1.1 (0.7–3.6) this study 

South Korea Seoul urban (0.5–0.6) (0.5–1.1) (0.5–1.5) Lee et al. (2011) 

South Korea Seoul urban (0.4–1.5)  (1.0–3.0) Lee et al. (2008) 

South Korea Gosan background (0.3–2.4) (0.1–2.3) (0.0–1.7) Lee et al. (2006) 

South Korea Daesan industrial (1.0–1.3) (1.2–1.4) (1.5–1.6) Thang et al. (2019) 

South Korea Yeongam-Gun residential 0.6 0.8 1.2  NIER (2016b) 

South Korea Gwangju residential 2.8 2.9 1.2  NIER (2018) 

South Korea Daejeon residential 2.6 1.2 0.8  NIER (2019) 

Japan Shinzuoka urban 1.5 1.0 1.1  Kume et al. (2007) 

China Xian urban 1.4±0.4  2.3±0.4  Ren et al. (2017) 

China Guangzhou urban 2.0±0.2  2.9±1.2  Ren et al. (2017) 

China Beijing urban 1.1 2.4 2.9  Huang et al. (2006) 

India Mumbai urban 1.2    Masih et al. (2019) 

mean ± std (range) 
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3.2.2 Long-range transport effect 

Figures 14, 15, and 16 illustrate CWT of Σ21 PAHs and BaP in gaseous and particulate phases arriving 

in Ulsan over the three sampling seasons. Low-molecular weight PAHs (i.e., Phe, Flt, and Pyr), which 

are have a short half-life time (55–170 h) (Mackay et al., 2006b), are dominant in gaseous PAHs. The 

gaseous PAHs emitted from northern and northeastern China may arrive in Ulsan because the air from 

northern and northeastern China could arrive in Ulsan within 72 h (Kim et al., 2016a). However, the 

half-life time of BaP in the gaseous phase is just a few hours (Cohen and Clay, 1994). Therefore, the 

gaseous BaP could be mostly affected by local sources. 

In winter, CWT highlighted different regions between gaseous and particulate phases (Figure 14). 

Northern and northeastern China (i.e., Heilongjiang, Jilin, Liaoning, and Inner Mongolia) could 

contribute more to the gaseous PAHs in Ulsan. Also, CWT revealed that the particulate Σ21 PAHs 

including BaP could be affected by emission sources in northeastern China (i.e., Heilongjiang, Jilin, 

Liaoning and Inner Mongolia), North Korea, and South Korea. In addition, prevailing northwesterly 

surface winds in winter suggest that local emissions from industrial areas in the southern and 

southeastern areas of Ulsan could be transported toward East Sea (Figure 3a). Therefore, both gaseous 

and particulate PAHs in winter could be affected by emission sources in northeastern China.  

In spring, CWT highlighted that the particulate Σ21 PAHs including BaP in Ulsan could be contributed 

by those originating from eastern China (i.e., Hebei and Shandong), North Korea, and South Korea 

(Figure 15). On the other hand, the gaseous Σ21 PAHs in Ulsan might be affected by different region, 

suggesting the gaseous Σ21 PAHs could be originated from northeastern and eastern China (i.e., Jilin, 

Inner Mongolia, Liaoning, and Jiangsu) and southern South Korea. However, surface winds showed 

that prevailing winds in spring passed over industrial areas before arriving sampling site (Figure 3b). 

Therefore, gaseous and particulate PAHs in spring could be contributed by those emitted from local and 

regional sources. 

In summer, CWT revealed that Σ21 PAHs in both gaseous and particulate phases were driven from 

eastern China (i.e., Shandong), South Korea, and Japan (Figure 16). Specially, South Korea and Japan 

might contribute to the particulate BaP in Ulsan. However, prevailing seasonal wind (i.e., southeasterly 

wind) could transport PAHs emitted from industrial area to the sample site (Figure 3c). Moreover, 

relatively low wind speed in summer could cause the low air dispersion, resulting in greater 

contributions from local sources. This is consistent with results from previous studies (Nguyen, 2020).  

Previous studies reported that particulate PAHs emitted from northern (i.e., Liaoning), northeastern (i.e., 

Hebei and Beijing), and eastern China (i.e., Shandong) and North Korea could contribute to those in 

Seoul (Kim et al., 2016b; Kim et al., 2016c). In winter, CWT result in Ulsan is in line with results from 

previous studies investigated in Seoul. In spring, on the contrary, eastern China (i.e., Hebei and 
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Shandong) and southeastern North Korea could more contribute to the particulate Σ21 PAHs in Ulsan 

and were more highlighted in CWT. Moreover, CWT in summer highlighted that emission sources from 

South Korea and Japan could affect to the particulate PAHs in Ulsan. Consequently, levels of PAHs 

including BaP in winter and spring could be attributable both regional sources (i.e., northern and 

northeastern China, North Korea in winter and northeastern and eastern China and North Korea in 

spring) as well as local emission sources, whereas those in summer could be primarily derived from 

local emission sources. 

 

     

Figure 14. CWT of Σ21 PAHs and BaP in (a) the gaseous and (b) particulate phases in winter. The 

numbers indicate several areas in China; Heilongjiang (1), Jilin (2), Liaoning (3), Inner 

Mongolia (4), Hebei (5), Shandong (6), Jiangsu (7). 
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Figure 15. CWT of Σ21 PAHs and BaP in (a) the gaseous and (b) particulate phases in spring. The 

numbers indicate several areas in China; Heilongjiang (1), Jilin (2), Liaoning (3), Inner 

Mongolia (4), Hebei (5), Shandong (6), Jiangsu (7). 
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Figure 16. CWT of Σ21 PAHs and BaP in (a) the gaseous and (b) particulate phases in summer. The 

numbers indicate several areas in China; Heilongjiang (1), Jilin (2), Liaoning (3), Inner 

Mongolia (4), Hebei (5), Shandong (6), Jiangsu (7). 
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3.3 Health risk assessment 

The total Σ21 BaPeq concentrations and their phase distributions are presented in Figure 17a. The Σ21 

BaPeq showed the highest concentration in winter (mean: 0.60 ng/m3), followed by spring (mean: 0.27 

ng/m3) and summer (mean: 0.17 ng/m3) since PAH concentrations and fraction of 5- and 6-ring were 

highest in winter and lowest in summer (as described in Section 3.1). In addition, the particulate 

concentrations of Σ21 BaPeq were higher than the Σ21 BaPeq concentrations of gaseous PAHs (winter: 17 

times, spring: 6.7 times, and summer: 3.5 times). The mean Σ13 BaPeq concentrations in total (gaseous 

+ particulate) phase were 0.48, 0.22, and 0.11 ng/m3 in winter, spring, and summer, respectively. These 

BaPeq concentrations of Σ13 PAHs showed similar with those in urban areas and lower than those in 

semi-rural and industrial areas in Ulsan (Nguyen et al., 2020). In addition, the average Σ13 BaPeq 

concentrations in Ulsan is generally lower than those in industrial area in Taiwan (Liu et al., 2010), 

urban areas in Beijing and Tenjin, China (Chao et al., 2019; Han et al., 2016). 

Among the Σ21 BaPeq, the Σ8 BaPeq which consist BjF, DMBA, 3MCA, DbaiP, DbahP, and DbalP 

contributed 21%, 19%, and 36% in winter, spring, and summer, respectively (Figure 17b). Figure 18 

illustrates concentrations and profiles of Σ21 BaPeq in the gaseous, particulate, and total (gaseous + 

particulate) phases. In winter, the major contributions to total gaseous Σ21 BaPeq came from DbahP 

(24%), BaP (23%), and Phe (14%), and those to total particulate Σ21 BaPeq came from BaP (43%), DbahP 

(16%), and Ind (9%). In spring, BaP (gas: 49% and particle: 44%), DahA (gas: 11% and particle: 10%), 

and Ind (gas: 10% and particle: 9%) were the most abundant compounds in the both gaseous and 

particulate phases. In summer, Σ21 BaPeq in the gaseous phase was mainly contributed by BaP (51%), 

DbaiP (17%), and Phe (10%), and Σ21 BaPeq in the particulate phase was mainly contributed by BaP 

(30%), DbaiP (27%), and DahA (19%). Especially, DbaiP and DbahP accounted for 31% of the gaseous 

Σ21 BaPeq and 16% of the particulate Σ21 BaPeq. Although DbaiP and DbahP showed low contributions 

in the total Σ21 PAHs in the atmosphere (0.02% and 0.04%, respectively), they showed the high 

contributions in BaPeq (6% and 12%, respectively) due to their high TEF values (Table 1). Hong et al. 

(2020) suggested that the contribution of dibenzopyrenes (i.e., DbaiP, DbahP, DbalP, and 

dibenzo[a,e]pyrene (DbaeP)) accounted for 28% of the total Σ53 BaPeq concentration although they 

comprised 0.8% of the 53 PAHs. Additionally, DbaiP, DbahP, and DbalP in particulate matter (PM) 

resulted in the increase of total BaPeq concentration (Layshock et al., 2010; Wang et al., 2016). Therefore, 

this finding could suggest that PAHs having high TEF values (i.e., DbaiP, DbahP, and DbalP) could play 

important roles in levels of BaPeq and risk. 
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Figure 17. Mean concentrations of BaPeq in three seasons: (a) phase distribution of Σ21 BaPeq and (b) 

distribution of Σ8 BaPeq and Σ13 BaPeq in total (gaseous + particulate) phase. 

 

   

Figure 18. Concentration and profiles of Σ21 BaPeq over three seasons in (a) the gaseous, (b) 

particulate, and (c) total (gaseous + particulate) phases. 
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Figure 19 shows the annual cancer risk for the Σ13 and the total Σ21 PAHs. As shown in Figure 20, the 

range of the total (gas + particle) cancer risk for the Σ13 PAHs were 2.45 × 10-8–4.85 × 10-7 in winter, 

2.45 × 10-8–4.85 × 10-7 in spring, and 2.45 × 10-9–4.85 × 10-8 in summer, respectively. This result was 

similar with the previous study in Ulsan (Nguyen et al., 2020). The range of the total (gas + particle) 

cancer risk for the Σ21 PAHs were 3.28 × 10-8–6.33 × 10-7 in winter, 1.36 × 10-8–2.41 × 10-7 in spring, 

and 8.80 × 10-9–1.72 × 10-7 in summer. Both cancer risk of Σ13 and Σ21 PAHs were lower than the 

acceptable risk level (10-6) suggested by US EPA. However, ILCRs of the total Σ21 PAHs were 1.2 to 

1.6 times higher than those of Σ13 PAHs, because the BaPeq concentrations between the Σ13 and the total 

Σ21 PAHs are different. In other words, the high TEF values of PAHs, that are not listed by US EPA (i.e., 

DbaiP, DbahP, and DbalP), increased BaPeq and cancer risk. Previous studies also highlighted the risk 

of dibenzopyrenes in the atmosphere due to their high toxicities (Hong et al., 2020; Layshock et al., 

2010). Therefore, it is important to investigate the toxicity of other PAHs over the US EPA priority 

PAHs and their health risk evaluation in further studies. 
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Figure 19. Probability density functions of the annual cancer risk for (a) the Σ13 PAHs and (b) Σ21 

PAHs during sampling seasons. 
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Figure 20. Cumulative probability ILCR of (a) Σ13 PAHs and (b) Σ21 PAHs through inhalation for 

three seasons. 
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Ⅳ. CONCLUSION 

 

This study identified seasonal variation of 21 PAHs in ambient air in Ulsan, South Korea. The PAH 

concentrations were mainly highest in winter and lowest in summer. The 3- and 4-ring species were 

dominant in the gaseous phase and 4-, 5-, and 6- ring PAHs were dominant in particulate phase. Also, 

high concentration of PAHs in winter indicates the increased PAH emission and low dispersion due to 

low mixing layer. Moreover, the contribution of the Σ8 PAHs which are not listed at the priority PAHs 

to the Σ21 PAH were 5.2% and they were mostly partitioned in the particulate phase. 

The emission sources of PAHs were various in three seasons. PAHs in winter were mainly influenced 

by pyrogenic sources including coal/biomass and natural gas burning, reflecting combustion for 

residential heating. On the other hand, PAHs in summer were affected by petrogenic and petroleum 

combustion sources emitted from industrial areas in Ulsan by seasonal winds (i.e., southeasterly wind). 

PAHs in spring were affected by both petrogenic and pyrogenic sources. Moreover, The BeP/BaP ratio 

suggested that PAHs in Ulsan could be affected by long-range transport in winter and spring. According 

to the hybrid receptor model (i.e., CWT), PAHs in winter and spring could be more contributed by those 

originated from regional emission sources as well as local sources, whereas PAHs in summer mostly 

affected by the local sources. Therefore, PAHs in winter and spring might be affected by pyrogenic 

sources (i.e., coal/biomass and natural gas burning) from the both regional and local areas. The PAHs 

in summer might be affected by both petrogenic and pyrogenic sources in local areas, especially 

industrial areas in Ulsan. 

This study firstly conducted the risk assessment of PAHs considering the more toxic species than BaP 

in South Korea. The estimated cancer risk Σ21 PAHs were higher than those of US EPA priority Σ13 

PAHs. The high TEF values of DbaiP and DbahP affected the increase of cancer risk in spite of low 

concentrations in the atmosphere.  

This is preliminary study to understand the pollution characteristics and cancer risk of atmospheric 

PAHs, which have high toxicity, in South Korea. PAHs in Ulsan could be contributed by both local 

emission and long-range transport. Indeed, toxic PAH species played important roles to human health 

due to their high potential carcinogenicities. Based on this study, further studies should more focus on 

the toxic PAHs in multimedia environment (e.g., atmosphere, soil, and water etc.) to understand the 

transport behavior and fate of the PAHs.  



45 

 

REFERENCES 

 

Akyuz, M., and Cabuk, H. (2010). Gas-particle partitioning and seasonal variation of polycyclic 

aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total 

Environment, 408(22), 5550-5558. 

Andersson, J. T., and Achten, C. (2015). Time to say goodbye to the 16 EPA PAHs? Toward an up-to-

date use of PACs for environmental purposes. Polycyclic Aromatic Compounds, 35(2-4), 330-

354. 

Arinaitwe, K., Kiremire, B. T., Muir, D. C., Fellin, P., Li, H., Teixeira, C., and Mubiru, D. N. (2012). 

Atmospheric concentrations of polycyclic aromatic hydrocarbons in the watershed of Lake 

Victoria, East Africa. Environmental Science & Technology, 46(21), 11524-11531. 

Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., and Perry, R. (1991). A review of 

atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, Air, & Soil 

Pollution, 60(3-4), 279-300. 

CalEPA. (2009). Technical support document for cancer potency factors: Methodologies for derivation, 

listing of available values and adjustments to allow for early life stage exposures. 

Chao, S., Liu, J., Chen, Y., Cao, H., and Zhang, A. (2019). Implications of seasonal control of PM2.5-

bound PAHs: An integrated approach for source apportionment, source region identification 

and health risk assessment. Environmental Pollution, 247, 685-695. 

Chen, S. C., and Liao, C. M. (2006). Health risk assessment on human exposed to environmental 

polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366(1), 

112-123. 

Choi, S.-D., Ghim, Y. S., Lee, J. Y., Kim, J. Y., and Kim, Y. P. (2012a). Factors affecting the level and 

pattern of polycyclic aromatic hydrocarbons (PAHs) at Gosan, Korea during a dust period. 

Journal of hazardous materials, 227-228, 79-87. 

Choi, S.-D., Kwon, H.-O., Lee, Y.-S., Park, E.-J., and Oh, J.-Y. (2012b). Improving the spatial resolution 

of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-

industrial city. Journal of hazardous materials, 241, 252-258. 

Clarke, K., Kwon, H.-O., and Choi, S.-D. (2014). Fast and reliable source identification of criteria air 

pollutants in an industrial city. Atmospheric environment, 95, 239-248. 

Cohen, Y., and Clay, R. E. (1994). Multimedia partitioning of particle-bound organics. Journal of 

hazardous materials, 37, 507-526. 

Collins, J. F., Brown, J. P., Alexeeff, G. V., and Salmon, A. G. (1998). Potency Equivalency Factors for 

Some Polycyclic Aromatic Hydrocarbons and Polycyclic Aromatic Hydrocarbon Derivatives. 

Regulatory Toxicology and Pharmacology, 28, 45-54. 

da Silva, D. A., and Bícego, M. C. (2010). Polycyclic aromatic hydrocarbons and petroleum biomarkers 

in São Sebastião Channel, Brazil: assessment of petroleum contamination. Marine 

environmental research, 69(5), 277-286. 

Daisey, J. M., Cheney, J. L., and Lioy, P. J. (1986). Profiles of organic particulate emissions from air 

pollution sources: status and needs for receptor source apportionment modeling. Journal of the 

Air Pollution Control Association, 36(1), 17-33. 

de Andrade, S. J., Cristale, J., Silva, F. S., Julião Zocolo, G., and Marchi, M. R. R. (2010). Contribution 

of sugar-cane harvesting season to atmospheric contamination by polycyclic aromatic 



46 

 

hydrocarbons (PAHs) in Araraquara city, Southeast Brazil. Atmospheric environment, 44(24), 

2913-2919. 

Esen, F., Tasdemir, Y., and Vardar, N. (2008). Atmospheric concentrations of PAHs, their possible 

sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmospheric 

Research, 88(3-4), 243-255. 

Fakhri, Y., Mousavi Khaneghah, A., Conti, G. O., Ferrante, M., Khezri, A., Darvishi, A., Ahmadi, M., 

Hasanzadeh, V., Rahimizadeh, A., Keramati, H., Moradi, B., and Amanidaz, N. (2018). 

Probabilistic risk assessment (Monte Carlo simulation method) of Pb and Cd in the onion bulb 

(Allium cepa) and soil of Iran. Environmental Science and Pollution Research, 25(31), 30894-

30906. 

Fang, G.-C., Wu, Y.-S., Chen, M.-H., Ho, T.-T., Huang, S.-H., and Rau, J.-Y. (2004). Polycyclic 

aromatic hydrocarbons study in Taichung, Taiwan, during 2002-2003. Atmospheric 

environment, 38(21), 3385-3391. 

Han, B., Liu, Y., You, Y., Xu, J., Zhou, J., Zhang, J., Niu, C., Zhang, N., He, F., Ding, X., and Bai, Z. 

(2016). Assessing the inhalation cancer risk of particulate matter bound polycyclic aromatic 

hydrocarbons (PAHs) for the elderly in a retirement community of a mega city in North China. 

Environmental Science and Pollution Research, 23(20), 20194-20204. 

Harkov, R., and Greenberg, A. (1985). Benzo(a)pyrene in New Jersey--results from a twenty-seven-site 

study. Journal of the Air Pollution Control Association, 35(3), 238-243. 

Hong, W. J., Jia, H., Yang, M., and Li, Y. F. (2020). Distribution, seasonal trends, and lung cancer risk 

of atmospheric polycyclic aromatic hydrocarbons in North China: A three-year case study in 

Dalian city. Ecotoxicological Environmental Safety, 196, 110526. 

Hsu, Y.-K., Holsen, T. M., and Hopke, P. K. (2003). Comparison of hybrid receptor models to locatePCB 

sources in Chicago. Atmospheric environment, 37, 545-562. 

Hsu, Y.-M., Harner, T., Li, H., and Fellin, P. (2015). PAH Measurements in Air in the Athabasca Oil 

Sands Region. Environmental Science & Technology, 49(9), 5584-5592. 

Huang, X.-F., He, L.-Y., Hu, M., and Zhang, Y.-H. (2006). Annual variation of particulate organic 

compounds in PM2.5 in the urban atmosphere of Beijing. Atmospheric environment, 40(14), 

2449-2458. 

IARC. (2004). IARC monographs on the evaluation of carcinogenic risks to humans. Lyon, France, 1-

1452. 

IARC. (2010). IARC Monographs on the Evaluation of Carcinogenic Risks to humans. Some Non-

heterocyclic PolycyclicAromatic Hydrocarbons and Some Related Exposures, 92, 1-868. 

IARC. (2012). Chemical agents and related occupations. Lyon, France., 100(PT F), 9. 

Ichikawa, Y., Watanabe, T., Horimoto, Y., Ishii, K., and Naito, S. (2018). Measurements of 50 Non-

polar Organic Compounds Including Polycyclic Aromatic Hydrocarbons, n-Alkanes and 

Phthalate Esters in Fine Particulate Matter (PM2.5) in an Industrial Area of Chiba Prefecture, 

Japan. Asian Journal of Atmospheric Environment, 12(3), 274-288. 

Kim, B. M., Lee, S. B., Kim, J. Y., Kim, S., Seo, J., Bae, G. N., and Lee, J. Y. (2016a). A multivariate 

receptor modeling study of air-borne particulate PAHs: Regional contributions in a roadside 

environment. Chemosphere, 144, 1270-1279. 

Kim, B. M., Seo, J., Kim, J. Y., Lee, J. Y., and Kim, Y. (2016b). Transported vs. local contributions from 

secondary and biomass burning sources to PM2.5. Atmospheric environment, 144, 24-36. 



47 

 

Kim, I. S., Wee, D., Kim, Y. P., and Lee, J. Y. (2016c). Development and application of three-

dimensional potential source contribution function (3D-PSCF). Environmental Science and 

Pollution Research, 23(17), 16946-16954. 

Kiss, G., Varga-Puchony, Z., Rohrbacher, G., and Hlavay, J. (1998). Distribution of polycyclic aromatic 

hydrocarbons on atmospheric aerosol particles of different sizes. Atmospheric Research, 46(3-

4), 153-261. 

Kulkarni, P., and Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, 

India. Atmospheric environment, 34(17), 2785-2790. 

Kume, K., Ohura, T., Noda, T., Amagai, T., and Fusaya, M. (2007). Seasonal and spatial trends of 

suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. 

Journal of hazardous materials, 144(1-2), 513-521. 

Layshock, J., Simonich, S. M., and Anderson, K. A. (2010). Effect of dibenzopyrene measurement on 

assessing air quality in Beijing air and possible implications for human health. Journal of 

Environmental Monitoring, 12(12), 2290-2298. 

Lee, J. Y., Kim, Y. P., and Kang, C.-H. (2011). Characteristics of the ambient particulate PAHs at Seoul, 

a mega city of Northeast Asia in comparison with the characteristics of a background site. 

Atmospheric Research, 99(1), 50-56. 

Lee, J. Y., Kim, Y. P., Kang, C.-H., Ghim, Y. S., and Kaneyasu, N. (2006). Temporal trend and long-

range transport of particulate polycyclic aromatic hydrocarbons at Gosan in northeast Asia 

between 2001 and 2004. Journal of Geophysical Research, 111(D11). 

Lee, J. Y., Shin, H. J., Bae, S. Y., Kim, Y. P., and Kang, C.-H. (2008). Seasonal variation of particle size 

distributions of PAHs at Seoul, Korea. Air Quality, Atmosphere & Health, 1(1), 57-68. 

Liu, H. H., Yang, H. H., Chou, C. D., Lin, M. H., and Chen, H. L. (2010). Risk assessment of 

gaseous/particulate phase PAH exposure in foundry industry. Journal of hazardous materials, 

181(1-3), 105-111. 

Mackay, D., Shiu, W.-Y., Ma, K.-C., and Lee, S. C. (2006a). Handbook of physical-chemical properties 

and environmental fate for organic chemicals: CRC press. 

Mackay, D., Shiu, W.-Y., Ma, K.-C., and Lee, S. C. (2006b). Handbook of physical-chemical properties 

and environmental fate for organic chemicals Volume I: Introduction and hydrocarbons: CRC 

press. 

Masala, S., Lim, H., Bergvall, C., Johansson, C., and Westerholm, R. (2016). Determination of semi-

volatile and particle-associated polycyclic aromatic hydrocarbons in Stockholm air with 

emphasis on the highly carcinogenic dibenzopyrene isomers. Atmospheric environment, 140, 

370-380. 

Masih, J., Dyavarchetty, S., Nair, A., Taneja, A., and Singhvi, R. (2019). Concentration and sources of 

fine particulate associated polycyclic aromatic hydrocarbons at two locations in the western 

coast of India. Environmental Technology & Innovation, 13, 179-188. 

MOE. (2007). Korean eposure factors handbook. 

Mostert, M. M. R., Ayoko, G. A., and Kokot, S. (2010). Application of chemometrics to analysis of soil 

pollutants. TrAC Trends in Analytical Chemistry, 29(5), 430-445. 

Nguyen, T. N. T. (2020). MULTIMEDIA MONITORING OF POLYCYCLIC AROMATIC 

HYDRCARBONS (PAHs) IN A LARGE INDUSTRIAL CITY: PHASE DISTRIBUTION AND 

EMISSION SOURCE IDENTIFICATION. (degree of Doctor of Philosophy Doctoral 

Dissertation). Ulsan National Institute of Science and Technology, Graduate School of UNIST. 

(1-144) 



48 

 

Nguyen, T. N. T., Jung, K.-S., Son, J. M., Kwon, H.-O., and Choi, S.-D. (2018). Seasonal variation, 

phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons 

at a semi-rural site in Ulsan, South Korea. Environmental Pollution, 236, 529-539. 

Nguyen, T. N. T., Kwon, H. O., Lammel, G., Jung, K. S., Lee, S. J., and Choi, S. D. (2020). Spatially 

high-resolved monitoring and risk assessment of polycyclic aromatic hydrocarbons in an 

industrial city. Journal of hazardous materials, 393, 122409. 

NIER. (2016a). Korean exposure factors handbook for children. 

NIER. (2016b). Monitoring of Hazardous Air Pollutants in the Industrial Ambient Atmosphere(II). 

NIER. (2018). Monitoring of Hazardous Air Pollutants in the Urban Ambient Atmosphere(IV). 

NIER. (2019). Monitoring of Hazardous Air Pollutants in the Urban Ambient Atmosphere(Ⅴ). 

Nisbet, I. C. T., and Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic 

hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300. 

OEHHA. (1994). BENZO[a]PYRENE AS A TOXIC AIR CONTAMINANT. 

Ren, Y., Zhou, B., Tao, J., Cao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Zhang, L., Han, Y., Liu, L., Cao, 

C., and Wang, G. (2017). Composition and size distribution of airborne particulate PAHs and 

oxygenated PAHs in two Chinese megacities. Atmospheric Research, 183, 322-330. 

Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993). Sources 

of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel 

trucks. Environmental Science & Technology, 27(4), 636-651. 

Simcik, M. F., Eisenreich, S. J., and Lioy, P. J. (1999). Source apportionment and source/sink 

relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric 

environment, 33(30), 5071-5079. 

Simoneit, B. R. T. (2002). Biomass burning — a review of organic tracers for smoke from incomplete 

combustion. Applied Geochemistry, 17(3), 129-162. 

Sofuoglu, S. C., Sofuoglu, A., Holsen, T. M., Alexander, C. M., and Pagano, J. J. (2013). Atmospheric 

concentrations and potential sources of PCBs, PBDEs, and pesticides to Acadia National Park. 

Environmental Pollution, 177, 116-124. 

Tang, L., Haeger-Eugensson, M., Sjöberg, K., Wichmann, J., Molnár, P., and Sallsten, G. (2014). 

Estimation of the long-range transport contribution from secondary inorganic components to 

urban background PM10 concentrations in south-western Sweden during 1986–2010. 

Atmospheric environment, 89, 93-101. 

Thang, P. Q., Kim, S.-J., Lee, S.-J., Ye, J., Seo, Y.-K., Baek, S.-O., and Choi, S.-D. (2019). Seasonal 

characteristics of particulate polycyclic aromatic hydrocarbons (PAHs) in a petrochemical and 

oil refinery industrial area on the west coast of South Korea. Atmospheric environment, 198, 

398-406. 

US-EPA. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic 

hydrocarbons. 1-28. 

Wang, Q., Kobayashi, K., Lu, S., Nakajima, D., Wang, W., Zhang, W., Sekiguchi, K., and Terasaki, M. 

(2016). Studies on size distribution and health risk of 37 species of polycyclic aromatic 

hydrocarbons associated with fine particulate matter collected in the atmosphere of a suburban 

area of Shanghai city, China. Environmental Pollution, 214, 149-160. 

Wang, Y. Q., Zhang, X. Y., and Draxler, R. R. (2009). TrajStat: GIS-based software that uses various 

trajectory statistical analysis methods to identify potential sources from long-term air pollution 

measurement data. Environmental Modelling & Software, 24(8), 938-939. 



49 

 

Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., and Sylvestrec, S. (2002). 

PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source 

and composition. Organic Geochemistry, 33(4), 489-515. 

Zhang, Y., Chen, J., Yang, H., Li, R., and Yu, Q. (2017). Seasonal variation and potential source regions 

of PM2.5-bound PAHs in the megacity Beijing, China: Impact of regional transport. 

Environmental Pollution, 231(Pt 1), 329-338. 

 

 



50 

 

SUPPLIMENTARY 

 

 

Figure 20. Chromatogram of the standard solution of 24 PAHs standard. 
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Figure 21. Chromatogram of the 24 PAHs in GFF sample. 
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Figure 22. Chromatogram of the 24 PAHs in PUF sample. 
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Table 11. Concentrations (ng/m3) of the particulate 21 PAHs during sampling period. 

 WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8 WT9 WT10 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SP11 SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 SU9 SU10 SU11 

Flu N.D. N.D. < MDL N.D. N.D. N.D. < MDL < MDL N.D. < MDL N.D. < MDL < MDL N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL < MDL < MDL 0.04 

Phe < MDL N.D. 0.79 0.39 0.10 < MDL 0.41 0.08 N.D. 0.15 0.08 0.15 < MDL 0.06 0.21 0.07 < MDL < MDL 0.12 0.07 < MDL N.D. N.D. < MDL < MDL 0.09 N.D. < MDL < MDL 0.07 0.05 0.17 

Ant < MDL < MDL < MDL < MDL N.D. N.D. < MDL < MDL N.D. < MDL N.D. < MDL < MDL N.D. N.D. < MDL N.D. N.D. < MDL N.D. N.D. < MDL N.D. < MDL < MDL < MDL N.D. < MDL < MDL < MDL < MDL < MDL 

Flt 0.09 < MDL 2.28 1.41 1.12 1.32 2.12 0.23 0.35 0.23 0.64 < MDL < MDL 0.17 0.74 0.17 < MDL 0.15 0.39 0.20 0.28 < MDL < MDL < MDL 0.09 0.22 < MDL 0.09 < MDL 0.12 < MDL < MDL 

Pyr 0.10 < MDL 1.77 1.06 0.96 1.04 1.51 0.19 0.28 0.17 0.54 0.08 < MDL 0.19 0.62 0.13 < MDL 0.12 0.31 0.15 0.23 < MDL < MDL < MDL 0.09 0.18 < MDL 0.08 < MDL 0.10 < MDL < MDL 

BcPhe < MDL < MDL 0.28 0.15 0.18 0.20 0.27 < MDL 0.07 < MDL 0.09 < MDL < MDL < MDL 0.08 < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

BaA 0.09 < MDL 0.60 0.28 0.37 0.29 0.48 0.06 0.08 0.06 0.16 0.05 < MDL 0.07 0.13 < MDL < MDL < MDL 0.10 0.07 0.06 < MDL < MDL < MDL < MDL < MDL N.D. < MDL < MDL < MDL < MDL < MDL 

Chr 0.14 < MDL 1.22 0.71 0.70 0.63 1.11 0.12 0.22 0.15 0.39 0.06 < MDL 0.15 0.32 0.08 < MDL 0.08 0.28 0.12 0.22 < MDL < MDL < MDL 0.09 0.13 < MDL 0.07 < MDL 0.07 < MDL < MDL 

Bb+jF 0.16 0.03 1.43 1.04 0.87 0.75 1.50 0.11 0.40 0.21 0.58 0.19 < MDL 0.34 0.52 0.12 0.05 0.12 0.40 0.26 0.29 < MDL < MDL 0.13 0.08 0.17 0.04 0.12 < MDL 0.09 < MDL < MDL 

BkF 0.07 < MDL 0.72 0.53 0.46 0.38 0.71 < MDL 0.23 0.09 0.38 < MDL < MDL 0.17 0.25 0.07 < MDL 0.06 0.17 0.16 0.12 < MDL < MDL 0.08 < MDL 0.09 < MDL 0.07 < MDL 0.07 < MDL < MDL 

DMBA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

BeP 0.11 < MDL 1.18 0.99 0.76 0.64 1.18 0.08 0.37 0.15 0.52 0.05 < MDL 0.36 0.51 0.10 0.06 0.11 0.29 0.27 0.31 < MDL < MDL 0.15 0.10 0.20 0.05 0.17 < MDL 0.09 < MDL < MDL 

BaP 0.09 < MDL 0.56 0.45 0.37 0.23 0.49 0.06 0.06 0.13 0.24 0.07 < MDL 0.11 0.26 0.09 < MDL < MDL 0.20 0.10 0.12 < MDL < MDL 0.06 < MDL 0.10 < MDL 0.06 < MDL < MDL < MDL < MDL 

3MCA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

Ind 0.16 0.04 0.93 0.98 0.80 0.62 1.20 0.12 0.35 0.20 0.53 0.10 < MDL 0.32 0.51 0.12 0.05 0.09 0.28 0.28 0.29 < MDL < MDL 0.13 0.07 0.15 0.03 0.09 < MDL 0.10 < MDL < MDL 

DahA < MDL < MDL 0.08 0.07 0.07 < MDL 0.10 < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL N.D. N.D. < MDL < MDL < MDL N.D. N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

BghiP 0.15 < MDL 0.86 0.96 0.74 0.60 1.01 0.11 0.31 0.17 0.52 0.07 < MDL 0.43 0.54 0.11 0.07 0.11 0.30 0.30 0.37 < MDL < MDL 0.17 0.08 0.19 < MDL 0.15 < MDL 0.11 < MDL < MDL 

DbaiP N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL 

DbahP < MDL N.D. 0.03 N.D. N.D. < MDL < MDL N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

DbalP N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SUM 1.18 0.07 13.35 9.14 7.79 6.95 12.25 1.17 2.83 1.76 5.01 1.82 0.00 2.48 4.74 1.07 0.29 0.88 2.91 2.03 2.36 0.04 0.00 0.77 0.65 1.50 0.11 0.90 0.00 0.86 0.05 0.21 
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Table 12. Concentrations (ng/m3) of the gaseous 21 PAHs during sampling period. 

 WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8 WT9 WT10 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SP11 SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 SU9 SU10 SU11 

Flu 3.80 1.44 5.91 3.48 0.48 3.62 6.69 2.10 1.76 2.54 2.77 1.74 0.19 1.00 0.42 0.28 0.50 0.13 0.11 < MDL 0.48 0.15 0.35 0.08 0.22 0.10 0.09 0.16 < MDL 0.61 0.12 0.12 

Phe 6.51 4.63 6.75 5.88 0.87 5.50 7.69 3.28 3.63 3.79 4.36 5.85 1.35 6.24 1.89 2.13 3.69 2.25 0.73 1.24 6.45 1.77 4.37 1.52 4.23 3.31 3.75 2.81 0.37 5.59 2.78 2.73 

Ant 0.75 0.19 0.30 0.46 < MDL 0.22 0.31 0.09 0.24 0.12 0.17 0.51 < MDL 0.26 < MDL < MDL 0.15 0.11 < MDL < MDL 0.15 < MDL 0.08 < MDL 0.10 < MDL 0.25 0.13 < MDL < MDL 0.29 < MDL 

Flt 2.16 1.23 1.76 1.83 0.50 1.50 1.81 0.51 1.34 1.21 1.24 2.25 0.72 2.06 0.52 0.76 0.84 0.57 0.37 0.75 1.73 0.41 1.05 0.44 1.51 1.18 1.91 1.35 0.48 1.35 1.25 0.71 

Pyr 1.60 0.99 0.99 1.22 0.30 0.80 1.00 0.21 0.88 0.80 0.72 2.54 0.57 1.94 0.30 0.55 0.76 0.42 0.36 0.57 1.65 0.35 1.03 0.40 1.20 1.17 2.15 1.47 0.47 1.20 1.60 0.93 

BcPhe < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

BaA < MDL 0.11 < MDL < MDL < MDL N.D. < MDL N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

Chr < MDL 0.16 < MDL < MDL < MDL < MDL < MDL N.D. 0.09 < MDL < MDL 0.08 < MDL 0.19 < MDL < MDL < MDL < MDL < MDL < MDL 0.14 < MDL < MDL < MDL 0.10 < MDL 0.09 < MDL < MDL < MDL < MDL < MDL 

Bb+jF < MDL < MDL < MDL < MDL < MDL N.D. N.D. N.D. < MDL N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

BkF < MDL < MDL < MDL N.D. < MDL N.D. N.D. N.D. < MDL N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. 

DMbA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

BeP < MDL < MDL < MDL < MDL < MDL N.D. < MDL N.D. < MDL N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL N.D. < MDL < MDL < MDL N.D. < MDL < MDL < MDL N.D. < MDL < MDL < MDL < MDL < MDL N.D. 

BaP N.D. < MDL < MDL N.D. < MDL N.D. N.D. N.D. N.D. < MDL N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. < MDL < MDL N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

3MCA N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

Ind < MDL < MDL < MDL < MDL < MDL N.D. < MDL N.D. N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

DahA N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. 

BghiP < MDL < MDL < MDL < MDL < MDL N.D. < MDL N.D. < MDL N.D. < MDL 0.22 < MDL < MDL < MDL < MDL N.D. < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL < MDL 

DbaiP N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. 

DbahP N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. < MDL N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

DbalP N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

SUM 14.82 8.75 15.71 12.87 2.16 11.65 17.51 6.17 7.95 8.46 9.26 13.19 2.83 11.69 3.14 3.72 5.95 3.47 1.57 2.56 10.61 2.68 6.88 2.43 7.36 5.77 8.24 5.92 1.32 8.75 6.04 4.50 
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