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Abstract 

 

In view of the fact that human history can be divided into eras according to the primary materials such 

as stone age, bronze age, and iron age, we can definitely say that we are living in the polymer age. The 

advanced polymeric materials are widely used in different fields of science, technologies and industries. 

For instance, there are biopolymers and therapeutic polymers, synthetic fibers, 3D printing plastics, 

polymeric films and membranes. As their applications are highlighted, study on characterizing the 

structural and rheological properties of polymers becomes one of the most important issue, because 

such knowledge enables to tailor material properties and control physical phenomena as required. 

However, due to their enormous intramolecular degree of freedom, polymers generally exhibit a variety 

of complex structural and rheological behaviors such as shear thinning and thickening, strain hardening, 

melt fracture, and phase separation. To understand the physical properties for polymer solutions and 

melts, we need to look into how polymeric materials behave on microscopic level, investigate molecular 

mechanisms behind those complex phenomena, and properly analyze what determines macroscopic 

properties. In this regard, computational study is essential for understanding the complicated 

macroscopic behaviors at the fundamental level. Depending on the time and length scales of polymer 

systems, there are multiple simulation methods. In this thesis, the molecular dynamics (MD) simulations 

based on the Newton’s second law and Monte Carlo (MC) simulations exploiting statistical mechanics 

are hired to carry out the detailed analysis on the physical properties of polymeric melts at atomistic 

level.  

This research is subdivided into three specific subjects. First, the structural and rheological properties 

of ring polymers at dense melt and dilute solution systems are analyzed under the steady shear flow 

using atomistic molecular dynamics simulations. Second, the effects of short-chain branching (SCB) 

on the unetangled ring and linear polyethylene are investigated at equilibrium state. Third, the new 

nonequilibrium Monte Carlo simulation methodology has been developed based on expanded 

nonequilibrium thermodynamic formalism to enhance to overcome the time-consuming problem of 

classical MD simulations. 
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Chapter 1. Introduction 

1.1. Research Motivation 

 

Understanding the structural and dynamical behavior of polymer liquids becomes imperative, since 

the advanced polymer materials are widely applied for the modern technologies and industries. 

Furthermore, the development process for the novel polymeric materials breaks from the conventional 

trial and error relying on the empirical data and goes forward to the inverse design strategy where the 

material architecture is formulated to intrinsically have the desirable properties. 

The enormous efforts have been made to comprehend the general knowledge of the structure-property-

phenomenon relationship. The significant advances have been achieved in elucidating the stress 

relaxation of linear and long-chain branched (LCB) polymers. [1-4] However, there is still critical lack 

of the understanding on the effects of the closed-loop topology on ring polymers. Despite the ring 

polymer is essentially characterized as a linear except that two free ends are connected, the structural 

and dynamical properties are significantly changed. Therefore, the comprehensive analysis with the 

new viewpoint of that ring polymers intrinsically possess two-dimensional surface characteristics is 

needed to understand their fundamental structural characteristics and dynamic mechanisms behind 

distinctive macroscopic properties. In addition, role of short branches whose length is even below Kuhn 

length has not been well understood, because the standard entropic approach is inapplicable. Recently, 

the numerical studies find out the essential role of short branches disturbing the overall chain 

conformation via fast random movement. [5] Under the various types of external flow, short chain 

branched (SCB) polymers commonly exhibit the compact structure and resistance of structural 

deformation against the applied flow. [5-8] In order to analyze the effects of short branches on the 

structural compactness, the additional study at fundamental atomistic level is needed to be carried out. 

Meanwhile, in the computational study for polymer systems, the classical MD simulations are 

limitedly used for the rather short chain polymers compared to those in practical applications, because 

time tracking of the large systems requires long simulation time unreachable by most advanced 

computing systems. [9] When the efficient Monte Carlo simulation is established on the nonequilibrium 

thermodynamics [10-14], this new method can solve the time consuming problem and further contribute 

to efficient study for the large molecular systems. 
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1.2. Theoretical Backgrounds 

1.2.1. Polymer Physics 

 
As a part of macromolecular science, the polymer physics begins with the study for the effects of 

long-chain connectivity between monomers. The early experiment and theoretical research have 

concentrated on the dilute polymer systems at the equilibrium state. Now, the polymer physics goes 

beyond the dilute systems and extensively deals with the polymers in the solid state and concentrated 

systems using molecular models and the statistical mechanics methods. It essentially aims to understand 

the structure-property relationship in order to tailor the material properties such as elasticity, 

crystallinity, and tensile strength as required and further control the physical phenomena. 

There are two well-known models successfully describing the structural and dynamical behaviors for 

unentangled and entangled polymer melts. For the unentangled polymers, their basic structure and 

dynamics can be described by the Rouse model which assumes a polymer chain as a set of beads 

connected by the entropic springs. [2,15,16] 

 

Figure 1.2.1. Schematic description of the Rouse model with N number of beads (gray circles) 

connected by springs. 

 

In other words, in this model, the dynamics of polymer is governed by the only intermolecular 

interactions with two neighboring beads. Specifically, the beads are characterized by hydrodynamic 

friction coefficient ξ and spring constant 
2

3 Bk T

b
 is obtained from the Helmholtz free energy where 

potential energy is ignored and only entropic effect is concerned. Then, the Langevin equation gives 

 
2

2 2

3
for 1,2, ,n nB

n

k T
n N

t b n

 

= + =
 

R R
f      (1.2.1) 

where Rn is the position of bead n, fn is random force, kB is Boltzmann constant, b is average length of 

spring and N is the number of beads. According to the molecular architecture, the boundary condition 

is different. For linear polymers, 

 
0

0 and 0n n

n n Nn n= =

 
= =

 

R R
      (1.2.2) 
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To contrary, for ring polymers, 

 
0

0

andn n
N

n n Nn n= =

 
= =

 

R R
R R       (1.2.3) 

The Langevin equation can be solved with boundary conditions using Fourier transform of Rn(t) into 

the normal coordinate Xp(t) defined as: 

 ( ) ( )
0

1
cos

N

p n

p n
t t dn

N N

 
=  

 
X R       (1.2.4) 

where linear chain has only odd modes of p (i.e., p = 1, 3, 5, …) and ring chain has only even modes of 

p (i.e., p = 0, 2, 4, …). Finally, the structural and dynamical properties estimated by Rouse model are 

summarized in below table. 

 

Table 1.2.1. Structure and dynamical properties (i.e., end-to-end distance <Rete
2>, ring diameter <Rd

2>, 

radius of gyration <Rg
2>, relaxation time R , and zero-shear viscosity 0 ) for linear and ring polymer 

chains estimated by Rouse model. 

 Linear Ring 

2

eteR  Nb2 - 

2

dR  -  
21

4
Nb  

2

gR  21

6
Nb  21

12
Nb  

R  
2 2

2

1

3 B

N b

k T




 

2 2

2

1

12 B

N b

k T




 

0  
2

,
12

R linear

RT

M

 
  

2

,
6

R ring

RT

M

 
  
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For the entangled polymers, topological constraint imposed by surrounding chains to the target chain 

plays an important role in polymer dynamics, because it significantly reduces the dynamical degrees of 

freedom. Therefore, beyond the intrinsic polymer properties characterized by hydrodynamic coefficient 

   and size of the chain Nb, additional topological constraint effect should be taken into account. 

According to the tube model [1,2], the intermolecular topological interactions are approximated as a 

mean-field tube whose axis coincide with that of the chain primitive path (i.e., the geometrically 

constructed shortest path connecting two chain ends without violating topological constraints). 

 

 

Figure 1.2.2. Schematic view of tube model where the topological constraints imposed by surrounding 

red chains to the target black chain are approximated as a mean-field tube. 

 

At short time scale, the dynamics of entangled polymer chain is assumed to be wiggling within the one-

dimensional curvilinear tube region characterized by tube diameter of a. However, at long time scale, 

snake-like reptative chain motion originating from the strong thermal motion of chain ends changes the 

primitive path by creating and destroying the ends of primitive path. [1] Therefore, the overall dynamics 

of entangled polymer chain is equivalent to the time evolution of the primitive path and the stress 

relaxation of entangled polymer chains is described by the survival probability ψ(s,t) of chain segment 

s to remain inside the initial tube at time t.  

Besides chain reptation motion, additional relaxation mechanisms for entangled polymers are 

investigated to complement the discrepancy between tube theory prediction and some important 

experimental observations such as scaling behavior of zero-shear viscosity with molecular weight (i.e., 

3

0 ~ M  for original tube model and 
3.4

0 ~ M   for experimental measurements). [2,17] Generally, 

there are contour length fluctuation (CLF) which accounts for the variation of the primitive path contour 

length with time and constraint release (CR) which considers the dynamics of constraint itself. [1,2] 
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1.2.2. Rheology 

 

Rheology is, literally, the physical science that studies the flow and deformation of the materials. In 

particular, the non-Newtonian fluids exhibit distinctive rheological response at the non-equilibrium 

state such as shear-thinning, melt fracture, and rod-climbing effect, because the contrasting viscous 

properties (following Newton’s law) and elastic properties (following Hooke’s law) appear 

simultaneously, called “viscoelasticity”. [17,18] To accurately characterize the structural deformation 

and stress relaxation behavior of the polymeric fluids, the two types of flows are typically used: shear 

and elongation flow. The velocity field for shear and elongational flow is defined respectively as: 

 ( )

( )
0

0

shear

t y

v t

 
 

=  
 
 

       (1.2.5) 

 ( )

( )

( )

1
1

2

1
1

2
elongation

b x

v t b y

z







 
− + 
 
 = +
 
 
 
 
 

      (1.2.6) 

 

Figure 1.2.3. Schematic illustration for the deformation of a cube in the shear flow (left) and planar 

elongation flow (right). 

 

The ideal goal of the rheology is to understand the physical material properties at the non-equilibrium 

state and finally, develop the constitutive equation that can explain and predict the linear and nonlinear 

viscoelastic behavior of polymer mateirals. The classical approach for developing constitutive equation 

is generalized linear viscoelastic (GLVE) fluid model formatted as:  
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( ) ( ) ( )

( ) ( )

' ' '

' ' ',

t

t

t G t t t dt

M t t t t dt

−

−

= − −

= −





 



      (1.2.7) 

Here, the nature of the applied external flow is represented by the infinitesimal strain tensor   and the 

nature of the material is represented by the relaxation modulus G and memory function M implying that 

the non-Newtonian fluids remember the past deformation they have experienced and the magnitude of 

memory effect decreases as one goes in backwards in time. (i.e., fading memory effect). For instance, 

in case of the Maxwell model which describes the viscoelastic behavior of the fluids by simple 

combination of dashpot (viscous property) and spring (elastic property), the relaxation modulus is 

( )
( )

1
'

0'
t t

G t t e 




− −

− =  indicating that the material forgets the history exponentially. [17,18] The GLVE 

approach is valuable in aspects that it is the first attempt for developing constitutive equations with 

consideration of the memory effect and in addition, can capture the rheological response of the fluids 

undergoing start-up, cessation, and small amplitude of oscillatory shear (SAOS) limitedly at small 

strains and weak flow rates. However, it fails to predict the nonlinear response of the material in large-

deformation and breaks frame-invariant objectivity. 

In order to accurately capture the frame-invariant objectivity, trial for other strain measurement such 

as Cauchy strain tensor (c) and Finger strain tensor (c-1) is made and that is equivalent to use different 

time derivatives for stress tensor (i.e., upper-convected time derivative 


  or lower-convected time 

derivative 


 ) in the differential form of the equation. In addition, to account for the nonlinear 

viscoelasticity, the framework of the constitutive equation is changed from the GLVE by introducing 

the new terms such as the second order of stress and potential derivatives into the formulation. 

Despite this simple empirical modification can match the wider variety of rheological behavior under 

the flow, the phenomenological development is unmanageable work. Hence, it is necessary to pursue 

molecular approaches which find some molecular level clues that are useful in interpreting complex 

phenomena and build up the constitutive equations for the macroscopic stress with reference to the 

detailed molecular physics. 
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1.3. Computational study 

 

The computational approach to the soft matter systems can be subdivided into the several hierarchies 

depending on the different levels of resolution. The simulation methods at each level can cover the 

specific window of length and time and thus, it is important to choose the simulation methods 

appropriate for the system of interest. Furthermore, by systematically integrating the methods at 

different levels, multiscale modeling is beneficial for comprehensive understanding of complex 

macromolecule properties involving multiplicity of time and length scales. 

At the most fundamental level, the quantum simulations such as ab-initio methods and density 

functional theory (DFT) investigate the electronic structure by solving the Scrhödinger equation 

(HΨ=EΨ). Using the invaluable information obtained from quantum simulations such as bonded 

geometry and electronic properties as input, the atomistic level simulations can estimate the 

macroscopic structural and dynamical properties and further provide insight the detailed molecular 

mechanisms behind complex equilibrium and nonequilibrium behavior. [9] The mesoscale simulations 

employing the coarse-grained representations can deal with longer time and length scale of the system 

and finally, at the continuum level, the polymer liquids are considered no longer as a collection of 

polymeric chains but as an entire material. 

In this research, the simulations at fundamental atomistic level such as molecular dynamics and Monte 

Carlo simulation are adopted to analyze and understand the molecular mechanism behind the 

complicated polymeric phenomena. [19-21] 

 

  

Figure 1.3.1. Hierarchy of multiscale modeling.  
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1.3.1. Molecular Dynamics simulations 

 

As a one of the most powerful computational methods, molecular dynamics simulation is widely 

applied to polymeric systems and has proven very beneficial for understanding the complicated 

macroscopic rheological behaviors of polymer systems at the fundamental molecular level. [11] 

Molecular dynamics simulation solves classical Newton’s laws of motion:  

 
d

m m
dt

= =
v

F a         (1.3.1) 

where F is force, a acceleration, m mass, v velocity of an atom and t is time. And then, tracks position 

and velocity of individual particles in time and finally provides time averaged thermodynamic 

properties, structural properties, and rheological properties. The Hamiltonian H of a system can be 

separated into kinetic energy K and potential energy U as a function of the set of momentum pi and 

coordinates ri of each particle i, respectively as follows: 
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Then, the Hamiltonian’s equations of motion which governs entire time-evolution of the system can be 

expressed as: 
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The set of p-SLLOD equations [22] of motion implemented with the Nosé-Hoover thermostat and 

barostat [23,24] for isothermal-isobaric (NPT) NEMD simulations is as follows: 
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where ir , ip , and iF  are, respectively, the position, momentum, and force vector of the ith atom of 

mass im  .    and P   are the coordinate-like and momentum-like variables, respectively, of the 

Nosé-Hoover thermostat with the thermostat mass parameter Q
. Similarly, P

, and Q
 are the co
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ordinate-like and momentum-like variables, respectively, of the Nose-Hoover barostat with the barostat 

mass parameter Q
. The relaxation time parameters for the thermostat and barostat were set equal to 

b = 1.07 ps and 
t = 0.24 ps, respectively, for all simulations. D denotes the dimensionality of the 

system and kB Boltzmann’s constant. N, V, and P represent the total number of atoms, the volume of 

the system, and the total pressure of the system, respectively. And u  is the following velocity 

gradient tensor. For steady shear flow, it has form of: 
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This equations of motions are integrated by an efficient reversible reference system propagation 

algorithm (r-RESPA) [25]. The time propagator G(Δt) for atom i can be derived as follows: 
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where Liouville operator L is defined as follows: 
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Because Lr and Lp are not communicating operators, we cannot simply rewrite  exp expr pi i  L L  as 

 exp expp ri i  L L , but in numerical calculation discretization is inevitable. By choosing Δt smaller, 

we can gain more accuracy and consider overall effects of operation on position and momentum. 

Furthermore, to make the RESPA reversible in time, the time propagator has to be a symmetric form. 
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1.3.2. Monte Carlo Simulations 

 

The Monte Carlo (MC) simulation is a stochastic method to solve problems numerically using 

repeated random samplings. Due to the stochastic characteristics, it is named after the city of Monaco 

which is famous for its casino and gambling. This method is first developed during the World War II 

to study the diffusion and collision behavior of neutrons in fission materials. Today, it is widely applied 

to the fields such as artificial intelligence (AI), financial engineering, bioinformatics, physics and 

various engineering fields. In particular, the MC is powerful to effectively study the dense phase of 

polymers at fundamental atomistic level, because the avoidance of tracking the time evolution of actual 

dynamics of polymer systems enables to jump the huge free-energy barrier separating two regions of 

configuration space between transient and steady state. [26-33] 

The application of MC simulations for polymer systems follows three steps. First, generate an initial 

configuration and second try a randomly generated configuration relying on random number and 

unphysical MC movements. At step three, evaluate the new configuration according to the acceptance 

criteria and random number and then decide whether the new configuration should be accepted or 

rejected. For the second step, because it is impossible to look into the whole possible configuration 

space, sampling the preferable state which makes most significant contributions to the system (i.e., 

importance sampling) is important. This is acquired by development and implementation of efficient 

MC movements for the polymer configurations. The widely used MC algorithms include reptation, flip, 

end-mer rotation, concerted rotation, and end-bridging.[34-36] The reptation movement is a traditional 

and simple move where one end of a randomly selected polymer chain is detached and reattached to the 

opposite end where the local geometry such as bond length, bending angle, and torsional angle is fixed. 

The flip and end-mer rotation movement rearrange the torsional angle of internal atoms or bending 

angle of an end atom of a randomly selected chain, respectively. The concerted rotation movement 

corresponds intramolecular rebridging movement where the coordinates of bridging trimer and 

neighboring atoms are switched by adjusting the torsional and bending angles. The advanced end-

bridging movement is designed to cut the connectivity of randomly selected two polymeric chains into 

each two subchains and then exchange the subchains to produce a new chain configuration with 

constraints of bond length and angle. 
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Figure 1.3.2. Schematic illustration for flip movement (left) and end-bridging movement (right). 

 

Regarding the step three, the decision of acceptance or rejection for new polymer configuration is made 

by comparing the potential energy and some other properties of existing old state and new state. 

Specifically, the new polymer configuration is welcomed when its potential energy is lower than old 

one. Otherwise, the proposed sampling is accepted when the acceptance probability Pacc consisting of 

the potential energy difference between two configurations is smaller than the randomly generated 

number. 

For instance, MC simulation at the semi-grand statistical ensemble {NchNVTμ*} has the fixed variables: 

the number of polymer chains Nch, the average number of atoms per chain N, the system volume V, the 

temperature T, and the spectrum of chain relative chemical potentials μ* controlling the distribution of 

chain lengths. The corresponding probability distribution function is given as: 
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and the Metropolis criterion is 
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where 1 Bk T  , n is the total number of atoms in system, μk
* the relative chemical potential of the kth 

chain consisting of Nk atoms. 
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1.3.3. Simulation model 

 

The potential function of a system can be divided into the potential energy terms of atoms, pairs, 

triplets, and etc. 

 ( ) ( ) ( )1 2 3, , ,
N N N N N N

i i j i j k

i i j i j k

U U U U= + + +  r r r r r r      (1.3.10) 

The first term U1 in eqn (1.3.9) expresses the external field effects on the system such as flow field, 

gravity field. The second pair potential energy U2 is a function of pair separation distance and the most 

significant interaction in polymeric liquids. And three-body interactions are so time-consuming in 

calculation and average of the interactions are rarely effective in liquid systems that triplet interactions 

are usually omitted. The potential interaction can be approximated as pairwise interaction and can be 

expressed as follows: 

 str ben tor LJU U U U U= + + +       (1.3.11) 

The nonbonded intermolecular and intramolecular interactions between atomic units are described by 

6-12 Lennard-Jones (LJ) potential. 
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where ij i j  =  and ( ) 2ij i j  = +  for cross interactions between atoms i and j by adopting the 

standard Lorentz-Berthelot mixing rules. The LJ energy parameters 
2CH Bk  and 

3CH Bk  were set 

equal to 47 K and 114 K, respectively, and the size parameters 
2CH   and 

3CH   equal to 3.93 Å 

identically for SKS potential model. [37] In TraPPE model [38], the LJ energy parameters CH Bk , 

2CH Bk , and 
3CH Bk  were set equal to 10 K, 46 K, and 98 K, respectively, and the size parameters 

CH , 
2CH , and 

3CH  equal to 4.68 Å, 3.95 Å, and 3.75 Å, respectively. A cut-off distance equal to 

2.5
2CH  was used in all the NEMD simulations. The intramolecular LJ interaction was active only 

between atoms separated by more than three bonds along the chain. The three bonded interactions 

[bond-stretching (Ustr), bond-bending (Uben), and bond-torsional (Utor) energies] were modeled by the 

following expressions:  
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where the bond-stretching constant and equilibrium bond length were str Bk k  = 452,900 K/Å2 and leq= 

1.54 Å, respectively. The bond-bending constant were set as 
ben Bk k  = 62,500 K/rad2, and the 

equilibrium bending angle θeq = 114° for CHx-CH2-CHay and θeq = 112° for CHx-CH-CHy. The bond-

torsional constants were such that (a) 0 Ba k  = 1010 K, 1 Ba k  = 2019 K, 2 Ba k  = 136.4 K, and 

3 Ba k  = -3165 K for CHx-CH2- CH2-CHy, and (b) 0 Ba k  = 395.24 K, 1 Ba k  = 895.08 K, 2 Ba k  = 

223.7 K, and 3 Ba k  = -1765.08 K for CHx-CH2- CH-CHy. Note that ϕ = 0 represents the (most stable) 

trans-state. 
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Chapter 2. Intrinsic surface characteristics and dynamic mechanisms 

of ring polymer 

2.1. Introduction 

 

While architecturally characterized as a linear polymer, ring polymers exhibit distinctive structural 

and dynamical properties [1–4]. It is generally known that ring polymers have relatively compact 

structures compared with their corresponding linear analogs [3, 5-9]. Typically, pure ring melts exhibit 

a smaller viscosity, larger diffusion coefficient, and faster relaxation behavior than their corresponding 

linear analogs. These structural and dynamical behaviors have also been supported by several 

theoretical analyses, such as the Flory-like mean-field approach, lattice animal model, and crumpled 

globule model [10-15]. 

Recent NEMD study on bulk and confined ring melts undergoing steady shear flow found that ring 

polymers possess strong structural resistance against external flow field and weak interfacial slip in the 

weak-to-intermediate flow regime compared with linear analog [16]. Other numerical studies have 

reported dynamical mechanisms for ring chains, such as tank-treading dynamics [17-20] and mutual 

threading dynamics [21,22]. 

The distinctive features of ring polymers essentially originate from the intrinsic geometrical 

constraints of the closed-loop ring topology. Despite extensive efforts of experimental and 

computational studies, the general structural characteristics and dynamic mechanisms of ring polymers 

under flow have not yet been fully understood. In this study, we aim to comprehensively analyze the 

fundamental structural and dynamical features of ring polymers under steady shear flow. To this end, 

we conducted atomistic NEMD simulations of ring melts and coarse-grained Brownian dynamics (BD) 

simulations of dilute ring solutions undergoing steady shear flow.  
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2.2. Simulation methods and Materials studied 

 

We performed detailed atomistic NEMD simulations of ring melts and coarse-grained Brownian 

dynamics (BD) simulations of dilute ring solutions undergoing steady shear flow. A strictly 

monodisperse C400H800 (unconcatenated and unknotted) ring polyethylene (PE) melt system was 

employed for the NEMD simulations, which were performed at a constant temperature T = 450K and 

density ρ = 0.764 g cm˗3 (corresponding to a pressure P = 1 atm). A dilute ring solution system devoid of 

intermolecular interactions was investigated via coarse-grained BD simulations [including the excluded 

volume (EV) and hydrodynamic interaction (HI) effects] for a bead-rod chain containing 66 beads 

connected by rigid rods [23]. According to a previous study [24], one rod approximately corresponds to 

6 CH2 monomers for PE molecules in shear flow, thus the bead-rod ring chain roughly matches C400H800. 

A detailed comparison between the ring melt and the dilute ring systems provides useful information to 

predict the structural and dynamical characteristics of semi-dilute polymer solutions with respect to the 

polymer concentration. 
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2.3. Results and Discussion 

 

Considering the closed molecular geometry of ring polymer, we begin the analysis with new viewpoint 

that ring polymers intrinsically has two-dimensional surface characteristics. Figure. 2.3.1 demonstrates 

how the simple algorithm allows for the extraction of the characteristic surfaces of the ring chains. 

Specifically, (i) we start to construct all the non-overlapping local triangular planes, each of which are 

constituted by three consecutive neighboring atoms (or beads) along the ring backbone; these triangles 

effectively depict the outermost ring surface. (ii)-(iv) We then apply the same procedure to successively 

build the inner surfaces of the ring in a step-by-step manner by forming new triangles with the remaining 

active atoms until only three atoms remained at the end to form the last triangle. This simple algorithm 

was numerically fast and could properly represent a variety of geometrically complex surfaces formed 

by ring polymers, as shown in snapshot of Fig. 2.3.1 From the constructed ring surface, we propose the 

average normal vector navg of the entire surface as a useful physical measure that can effectively 

characterize the global orientation of a ring chain. For the linear polymers, chain end-to-end vector 

ete
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 R r r  with each bond vector ri and total number of local bonds Nb represents 

the average bond orientation vector for the whole one-dimensional linear chain . In line with this, by 

exploiting each surface normal vector i ia ib
 = n r r  for two bond vectors consisting a triangle, navg 

defined as avg
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 
 n n n   represents the average surface orientation vector for the 

entire two-dimensional surface formed by a ring topology. Therefore, the navg of the ring polymer is 

considered to intrinsically correspond with Rete for the linear polymer. We demonstrate that these surface 

properties are very useful for analyzing the fundamental structural and dynamical characteristics of ring 

polymers under flow conditions. 

 

Figure 2.3.1. Schematic description of the numerical algorithm for constructing intrinsic ring surface.  
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Next, we analyze the basic structural characteristics of the surface orientation and stretch for ring 

systems under shear flow. For an in-depth understanding of the fundamental aspects of actual ring 

polymers, we first set up a simple ‘toy model’ with a fixed two-dimensional square surface by 

constructing free-draining bead-rod BD simulations without excluded volume effects and 

hydrodynamic interactions. Results in Fig. 2.3.2 clearly show that the rigid surface tends to lie down 

preferentially in the xz-plane which is the most stable position of the two-dimensional surface, except 

for certain special initial surface orientations. While the geometric surface formed by the actual flexible 

ring polymers is generally curved and much more complex, their fundamental orientational 

characteristics are considered to be essentially similar to those of the aforementioned rigid structure. 

 

 

Figure 2.3.2. Rotational illustrations of the toy model under shear flow without the Brownian random 

force. (A) When there is no surface area facing the yz-plane at the initial state. (B) When there is non-

zero surface area facing the yz-plane at the initial state. The yellow arrows in the illustrations indicate 

the normal vector of the toy model. 
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It was confirmed by the results in Fig. 2.3.3 for the projected areas of the curved ring surface for each 

system, i.e., Axy on the xy-plane, Ayz on the yz-plane, and Axz on the xz-plane. We analyzed each projected 

area normalized by At in comparison with the toy model. Notably, both the dilute and melt ring systems 

exhibited rapid overall increasing and decreasing behaviors for 
txzA A  and 

txyA A , respectively, 

as the flow strength increased. This fully consistent behavior between actual ring polymers and toy 

model indicates the essentially same fundamental characteristics of the ring surface under shear flow. 

However, the degree of variation with flow strength appears to be somewhat smaller for actual systems 

than the toy model. It can be attributed that in real systems, local surface fluctuations are developed in 

association with many local loops that protrude in the flow-gradient (y)-direction along their flexible 

backbone. We further notice a larger t/xyA A  and smaller t/yzA A  for the ring melt compared 

with the dilute ring system in the intermediate-to-strong flow regime. This can be closely associated 

with the higher degree of ring polymer center-loop tumbling dynamics (via strong intermolecular 

collisions) in the melt relative to a dilute solution; this will be further discussed in the following results. 

The significant dynamic role of local loops in actual ring polymers can be further confirmed by 

comparing the /xy xzA A   in Fig. 2.3.3 representing the degree of surface orientation to the 

kinematically stable xz-plane under shear flow. While both the dilute and melt systems show consistency 

in decreasing behavior with increasing shear rate, the degree of change is weaker compared to toy model 

due to the creation of local loops. 

 

 

Figure 2.3.3. (Left) Area projected from the intrinsic surface of the ring into three xy- (circles and 

dashed line), xz- (squares and solid line), and yz- (triangles and dotted line) planes for melt (orange 

symbols), dilute (black symbols), and toy model (dark green lines) as a function of Weissenberg number 

(Wi). Note that these projected areas were normalized by the total area of the intrinsic ring surface At. 

(Right) The ratio between Axy and Axz vs. Wi for melt (orange circles), dilute (black circles), and toy 

model (dark green line).  
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Figure 2.3.4 shows the characteristic rotational and tumbling dynamics mechanisms of ring chains 

under shear flow. We note that these primary mechanisms are common to both dilute and melt systems, 

although the relative proportion of each mechanism with respect to the flow strength is quantitatively 

different between the two systems, as discussed later. While the chain ends have a dominant role in 

initiating the rotational and tumbling dynamics in linear polymers, the local loops protruding along the 

closed ring backbone play a crucial role in activating the dynamic mechanisms in ring polymers. It is 

noted that short- or long-lived loops can be locally and randomly created via Brownian thermal motion, 

applied flow field, and intermolecular collisions. In the intermediate flow regime, local loops protruding 

in the flow-gradient (y-)direction tend to propagate along the closed ring surface boundary (loop-

migration) and/or move in space (loop-tumbling) with the flow field. For the loop-migration mechanism, 

the overall surface structure of the ring is maintained quite well; hence, navg is practically unchanged. 

This means that navg does not detect the loop-migration dynamics and this characteristic can be used to 

distinguish between the loop-migration and loop-tumbling mechanisms for ring rotation. For the loop-

tumbling dynamics, ring polymers exhibit two distinct mechanisms: end-loop and center-loop tumbling. 

The end-loop (S-shaped or hairpin-like) tumbling mechanism of the stretched rings along the flow 

direction is essentially similar to the typical end-over-end tumbling mechanism for linear chains. 

However, from a geometrical viewpoint, the former characterizes the overall surface dynamics, while 

the latter represents the whole line dynamics. Importantly, ring polymers reveal an additional tumbling 

mechanism driven by the loops located in the middle of the stretched ring backbone. In contrast with 

the end-loop tumbling mechanism where the overall chain rotation occurs exclusively in the xy-plane, 

the center-loop mechanism has diagonal chain rotation lying through both the xy- and yz-planes. This 

center-loop driven tumbling leads to a variety of distinctive average and transient structural and 

dynamical characteristics for ring polymers in shear flow. navg can adequately represent both loop-

tumbling mechanisms for ring polymers, similarly to Rete for linear polymers.  
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Figure 2.3.4. Molecular mechanisms of ring polymer. (A) Schematic illustrations for the fundamental 

molecular dynamics mechanisms for the ring polymer under shear flow. (B) Representative results of 

the average accumulated angle n of navg, xy of Qxy projected on the xy-plane, and yz of Qyz projected 

on the yz-plane during loop migration (left panel), end-loop tumbling (middle panel), and center-loop 

tumbling (right panel). 
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In Fig. 2.3.4, we illustrate how the representative surface measures such as navg and the relative position 

vectors [Qi = ri – rc, for i = 1, 2, …, Na, where Na and rc are the number of atoms (or beads) per chain 

and center of mass position vector of a chain, respectively] projected on the xy-plane (Qxy,i) and yz-plane 

(Qyz,i) can be used to characterize the aforementioned dynamics mechanisms of ring polymers in terms 

of the angle accumulation during chain rotation and tumbling. The accumulated angle θn(Δt) of navg is 

the summation of the angle of navg with respect to navg at a time origin of t' during Δt= t - t'. Similarly, 

the accumulated angle θαβ,i(Δt) of Qαβ,i projected on the αβ-plane is the summation of angle of Qαβ,i with 

respect to Qαβ,i at a time origin of t' during Δt = t - t'. Thus, ( ) ( ), a

1

aN

i

i

t t N  
=

 =   with α, β = x, 

y, or z represents the average accumulated angle of Qαβ,i projected on the αβ-plane. For the loop-

migration case, the angles n and yz are not accumulated, while xy is gradually accumulated indicating 

mainly xy-plane rotation for loop-migration dynamics. In sharp contrast, for both the end-loop and 

center-loop tumbling mechanisms, the angle accumulated by navg amounts to ~180, reflecting the 

upside-down tumbling event for the overall ring surface. Furthermore, xy is rapidly accumulated close 

to 180 for end-loop tumbling, which basically corresponds to the angle of Rete accumulated during 

end-over-end tumbling of the linear polymer. In comparison, similarly to each other, xy and yz are 

gradually accumulated compared with navg for the center-loop tumbling mechanism. Therefore, we can 

classify the characteristic rotation and tumbling mechanisms of ring polymers with proper analysis on 

these geometrical surface measures. 

Furthermore, in Fig. 2.3.5 we quantified the relative populations of the end-loop tumbling and center-

loop tumbling mechanisms for the dilute and melt systems. In the whole flow regime, center-loop 

tumbling frequently appears than end-loop tumbling for both systems, indicating the significant role of 

local loops for the ring polymer. However, the melt system shows a particularly higher proportion of 

the center-loop mechanism due to a significantly high number of loops along the ring backbone created 

by strong intermolecular interactions. This result implies that the relative portion of center-loop 

tumbling over that of end-loop tumbling would generally increase with increasing polymer 

concentration for semi-dilute ring systems. As the flow strength increases, the portion of the end-loop 

and center-loop mechanisms generally increases and decreases, respectively, for both systems. This 

change is mainly because the higher chain stretching and alignment in the applied flow direction reduces 

both the amount and magnitude of local loops. 
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Figure 2.3.5 (Left) The proportion of the end-loop tumbling (circles) and center-loop tumbling 

(triangles) mechanisms as a function of Wi for the dilute (black) and melt (orange) ring systems. (Right) 

Probability distribution function (PDF) of the chain radius of gyration normalized by the equilibrium 

value for the ring (black line) and linear (dark green line) PE melts in the strong flow regime at Wi = 

100 and 2000, respectively. 

 

Notably, the dilute system shows a rather steep decrease followed by a plateau in the intermediate-to-

strong flow regime, indicating somewhat fast saturation of the loop characteristics along with overall 

chain stretching and orientation. In comparison, the melt system exhibits a gradual decrease of center-

loop tumbling in the intermediate flow regime and relatively faster decrease in the strong flow regime. 

It should be noted that center-loop tumbling is still dominant over end-loop tumbling for the melt system, 

even at strong flow fields because of many activated local loops formed via strong intermolecular 

collisions. Furthermore, the hairpin-like end-loop tumbling dynamics become dominant over the S-

shaped one in the strong flow regime for both dilute and melt systems, similar to linear polymers [25-

28]. This dynamical feature of ring polymer directly affects the overall shape of the probability 

distribution P(Rg) of the chain radius of gyration (Rg). Because stretched ring structures can be 

maintained during center-loop tumbling dynamics without the compact folded conformation that occurs 

during the end-loop tumbling dynamics (which is similar to the end-over-end tumbling dynamics of 

linear polymer), ring melt is supposed to exhibit a weaker rotation peak and relatively larger stretched 

portions in P(Rg) compared with the linear analog, which is evident in Fig. 3B. 
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2.4. Conclusion 

 

In conclusion, we conducted a comprehensive study on the intrinsic structural characteristics and 

dynamic mechanisms of ring polymers under shear flow with both dilute and melt conditions. Our 

analysis began with the new viewpoint that ring polymers intrinsically possess two-dimensional surface 

characteristics because of their closed-loop geometry, which is in contrast with the one-dimensional 

line characteristics of linear polymers. Based on this view, we introduced several representative physical 

measures that could effectively describe the structural and dynamical characteristics of ring polymers, 

such as the total and projected surface areas and the average normal vector navg of the ring surface, 

which was found to be very informative for analyzing the characteristic molecular dynamics 

mechanisms of ring chains. 

An efficient numerical scheme was also developed that allowed us to effectively describe the complex 

curved surface formed by flexible ring chains. The obtained surface information was found to be very 

useful for analyzing the characteristic dynamic mechanisms of ring polymers under shear flow.  

The new curved surface criteria and categorization of the ring-polymer dynamics proposed in this 

work can serve as fundamental descriptors for analyzing various ring-shaped polymers and systems, 

such as branched ring polymers, ring-shaped biological molecules, and two-dimensional polymers.  
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Chapter 3. Molecular Dynamics study on the structure and relaxation 

of short-chain branched ring polymer melts 

 

3.1. Introduction 

 

The numerous research efforts have been made to characterize the distinctive structural and 

rheological behaviors of polymers with respect to their molecular architectures. Significant advances 

have been achieved over the past in comprehending the behaviors of linear and long-chain branched 

(LCB) polymers. For instance, the fundamental characteristics of dynamics of entangled linear and LCB 

polymers have been well explained by the tube theory originally developed by de Gennes [1] and Doi-

Edwards [2], where entanglement effects are effectively accounted for via a mean-field tube and the 

dynamics is thus assumed to be strictly restricted to such a one-dimensional curvilinear tube region, 

leading to a snake-like reptative chain motion. Similar dynamical features have been applied to LCB 

polymers: here, however, each dangling long branch (arm) is supposed to perform a repetitive retractive 

(breathing) motion starting from its free end all the way down to the fixed branch (or junction) point 

that is directly connected to the chain backbone [3-5]. In contrast, the fundamental characteristics of 

short-chain branched (SCB) polymers have not yet been well understood mainly due to the 

inapplicability of the standard entropic-based approach [3,4] to describe the dynamics of branches 

whose length is generally too short. Accordingly, the structural and dynamical characteristics of SCB 

polymers have usually been assumed to be similar to those of linear polymers. However, recent 

numerical studies [6-9] of unentangled SCB polymer systems have revealed the fundamental role of 

short branches via their very fast random Brownian movements that gives rise to distinctive structural 

and dynamical features of SCB polymers. For instance, in comparison to the linear polymers, the SCB 

polymers exhibit more compact and less deformed chain structures in response to an applied flow, 

thereby resulting in distinctive rheological behaviors such as a reduced shear-thinning behavior. 

Another interesting chain molecule is ring polymer, which is characterized as a linear polymer but with 

internally closed-loop topology without chain ends. Due to the absence of the free chain ends that are 

necessary for the whole chain reptation or arm relaxation mechanisms, the standard tube theory [1,2] 

cannot be applied to describe the dynamics of ring polymers. It has been well documented that the 

intrinsic closed-loop geometry of ring polymer generally leads to a more compact polymer structure, 

giving rise to substantially distinct structural and rheological characteristics from the linear polymer 

[10-27]. For example, a recent numerical study of atomistic nonequilibrium molecular dynamics 

(NEMD) simulations for ring melts under shear and planar elongational flows showed that in 

comparison to the linear analogues, ring polymers exhibit a much lesser degree of chain stretch and 
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alignment in response to the applied flow [21]. Yet, there remains an open issue in regard to the 

characteristic molecular mechanisms (e.g., mutual threading between rings) that underlie distinctive 

dynamical properties, such as diffusion coefficient and viscosity, for ring melts [22-26]. Considering 

the unique viscoelastic behaviors of the ring and SCB polymers and their potential benefits in polymer 

industry, the major objective of this study is to analyze how the short branches influences the local- and 

large-scale chain structure and intrinsic relaxation behavior for the SCB ring polymers, in conjunction 

with the close-loop ring geometry and the nonconcatenation topological constraints between ring chains. 

Here we investigated various structural properties and relaxation characteristics of the SCB ring 

polymers using atomistic equilibrium molecular dynamics (MD) simulations. Additionally, the results 

for the SCB ring system were directly compared with those of the SCB linear analogue. To quantify the 

short-branching effects, results of the SCB linear and ring polymers were further compared with those 

of the corresponding bare linear and ring polymers having the same backbone length but without short 

branches. 
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3.2. Simulation methods and Materials studied 

 

In present work, two short-chain branched polyethylene (PE) molecules were employed: (i) the SCB 

linear system (denoted as SCB_L_400_33x5) and (ii) the SCB ring system (denoted as 

SCB_R_400_33x5) where each chain contains 400 carbon atoms in the (linear and ring, respectively) 

backbone and uniformly distributed 33 short branches along the backbone with each consisting of 5 

carbon atoms. Therefore, each chain contains 565 carbon atoms in total for the SCB ring and linear 

systems. To quantify the short-branching effects systematically, two unbranched polymers were chosen 

as reference for each of the linear and ring SCB systems, based on the total and the backbone molecular 

weight; i.e., C400H802 and C565H1132 linear polymers (denoted by L_400 and L_565, respectively) and 

C400H800 and C565H1130 ring polymers (denoted by R_400 and R_565, respectively). Figure 2.2.1 

schematically depicts the representative molecular architectures of the linear and ring polymers and the 

corresponding SCB polymers.  

 

 

Figure 2.2.1. Schematic image of the molecular architectures for the bare linear (L_400 and L_565) 

and ring (R_400 and R_565) PE and the short-chain branched linear (SCB_L_400_33x5) and ring 

(SCB_R_400_33x5) PE systems simulated in this study. The detailed local structure of SCB polymers 

is depicted in the yellow circle. 
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The equilibrium MD simulations were conducted for all systems in the isothermal-isobaric (NPT) 

statistical ensemble at constant temperature T = 450 K and constant pressure P = 1 atm using the Nosé-

Hoover thermostat and barostat [28,29]. Each system was enclosed in a cubic simulation box whose 

initial dimension was set as more than two times the average chain radius of gyration Rg for the system 

to avoid system-size effects. The average box dimensions for the L_400, L_565, R_400, R_565, 

SCB_L_400_33x5, and SCB_R_400_33x5 systems were equal to 86.55 Å 105.82 Å, 84.50 Å, 100.23 

Å, 97.05 Å, and 96.98 Å, respectively. The set of the evolution equations was numerically integrated 

using reversible reference system propagation algorithm (r-RESPA) [30] with two different time scales 

in an MD step: 0.48 fs for the bond-stretching, bond-bending, and bond-torsional interactions, and 2.39 

fs for the nonbonded inter- and intramolecular Lennard-Jones (LJ) interactions and the Nosé-Hoover 

thermostat and barostat. The well-known Transferable Potentials for Phase Equilibria (TraPPE) united 

atom potential model [31] was adopted for all the systems, with the exception that the rigid bond 

assumed in the original model was replaced by a flexible one with a harmonic potential and a relatively 

large spring constant.  
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3.3. Results and Discussion 

 

The Table 3.3.1 shows the simulation results for the density (ρ), characteristic chain dimensions 

( 2 2 2, ,d ete gR R R ), packing length (lp), and eigenvalues (λ1 , λ2 , λ3) of the gyration tensor for the 

all PE melt systems. The system density at T = 450 K and P = 1 atm appears to be slightly larger for the 

ring melts in comparison to the corresponding linear melts, due to the absence of chain ends and the 

nonconcatenation topological constraints for ring polymers. In addition, the SCB_R_400_33x5 and 

SCB_L_400_33x5 systems exhibit a slightly higher density than their bare ring systems without short 

branches, indicating that the increase in the total free volume space of the system via many short-branch 

ends is sufficiently compensated by the local structural compactness around each branch point. 

Concerning the global-scale chain dimension, 2 2

linear ringete dR R  are equal to 2.6 and 3.1 for the 

C400H802 and C565H1130, respectively. These values larger than 2 that is predicted by the Rouse model 

[14] and Zimm and Stockmayer [32] are attributed to the overall compact chain structures via 

nonconcatenation topological constraints between ring chains imposing an effective pressure on 

individual rings [10,14-20] (as consistent, the ratio 2 2

linear ringete dR R  between the mean-square 

chain end-to-end distance 2

eteR  and the mean-square ring diameter 2

dR  is shown to be larger 

than 4 predicted by the Rouse model [14]). It is noticeable that SCB_L_400_33x5 and 

SCB_R_400_33x5 systems show the reduced backbone dimensions than linear (L_400) and ring 

(R_400) systems at the same backbone molecular weight. The relatively compact backbone structures 

of the SCB polymers are attributed to the inherent Brownian motions of short branches located along 

the backbone. [6-9]. 
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Table 3.3.1. Results for the density ρ, mean-square ring diameter 2

dR , mean-square chain end-to-end distance 2

eteR , mean-square chain radius of 

gyration 2

gR , packing length lp, and three principal eigenvalues (λ1 ≥ λ2 ≥ λ3) of gyration tensor Gαβ for the simulated linear, ring, and SCB PE melts. The 

values in parentheses represent the results based on only the chain backbone for the SCB PE systems. 

system ρ (g/cm3) ( )2 ÅdR 2  ( )2 2ÅeteR  ( )2 ÅgR 2  2 2

SCB C400g gR R  
1 3   2 3   

R_400 
  0.7760 

± 0.0004 
1468 ± 42 - 504 ± 15 - 7.1 ± 0.8 2.4 ± 0.2 

R_565 
  0.7761 

± 0.0008 
1870 ± 51 - 653 ± 17 - 6.5 ± 0.7 2.3 ± 0.1 

SCB_R_400_33x5 

(backbone) 

  0.7778 

± 0.0009 
1355 ± 36 - 

475 ± 13 

(460 ± 13) 

0.94 ± 0.02 

(0.91 ± 0.02) 

6.0 ± 0.6 

(6.4 ± 0.7) 

2.2 ± 0.2 

(2.3 ± 0.2) 

L_400 
  0.7744 

 ± 0.0005 
- 8160 ± 240 1335 ± 25 - 13.1 ± 1.8 3.0 ± 0.4 

L_565 
  0.7758 

± 0.0001 
- 12251 ± 220 2018 ± 26 - 14.0 ± 1.4 2.9 ± 0.3 

SCB_L_400_33x5 

(backbone) 

  0.7770 

± 0.0010 
- 7807 ± 139 

1270 ± 38 

(1255 ± 26) 

0.95 ± 0.03 

(0.94 ± 0.02) 

13.6 ± 1.6 

(14.5 ± 1.7) 

2.8 ± 0.3 

(3.0 ± 0.4) 
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As demonstrated in recent numerical studies [6-9], fast random movements of short branches constantly 

disturb the overall chain conformation and lead to a more compact and less deformed chain structure in 

response to the applied flow. Interestingly, it is seen from the relative ratio of chain radius of gyration 

2 2

SCB C400g gR R  between the SCB polymers (SCB_L_400_33x5 and SCB_R_400_33x5) and the 

corresponding bare linear (L_400) and ring (R_400) systems in Table 3.3.1 that the degree of structural 

compactness due to the short branches is quantitatively very similar between the ring and linear SCB 

polymers. This feature indicates that the dynamical role of the short branches and their influences in 

determining the structural characteristics remain the same, irrespective of the molecular architectures 

of polymer. 

In addition to the global chain size, we further analyzed the variation in the overall shape of polymer 

chains in association with the ring topology and the short branches, based on the three eigenvalues (λ1 

≥ λ2 ≥ λ3) of the second-rank chain radius of gyration tensor (Gαβ) which represent the spatial 

distributions of monomers along the three mutually-orthogonal principal directions. All polymer 

systems exhibit a standard prolate ellipsoidal chain shape, irrespective of their molecular architectures. 

However, ring polymers, due to their closed-loop geometrical constraint, possess a lesser degree of 

asymmetry in shape as compared to the linear analogues. Specifically, the R_565 system displays a 

more symmetrical (spherical) shape than the R_400 system. This is due to a stronger effect of the 

nonconcatenation topological constraint imposing an effective pressure on chains for longer rings 

[10,14-20]. Regarding the effect of short branches, in spite of their reduced chain dimension, the SCB 

linear and SCB ring systems exhibit practically identical chain shape to that of the corresponding bare 

linear and ring systems, respectively. 

To understand the influences of short branches on the local structure, we conducted a detailed analysis 

on the torsional angle () distributions. Figure 3.3.1(a) presents the distribution P() for the simulated 

ring, linear, and SCB PE systems. First, the ring and linear polymers either with or without short 

branches exhibit quantitatively very similar behaviors of P() to each other in the whole range of , 

implying their similar overall chain structures. However, it should be noted that the ring systems possess 

a slightly higher value (~1%) for the relative ratio of the gauche-state to the trans-state than the linear 

systems, as shown in Table 3.3.2, due to the intrinsic closed-loop topology and geometrical constraint 

(i.e., nonconcatenation). 



49 

 

 

Figure 3.3.1. (a) Probability distribution function P() of the bond-torsional angle  along the chain 

backbone. (b) P() of the three distinct backbone torsional modes [CH2-CH-CH2-CH2 (SET 1), CH-

CH2-CH2-CH2 (SET 2), and CH2-CH2-CH2-CH2 (SET 3)] for the simulated SCB ring 

(SCB_R_400_33x5) and linear (SCB_L_400_33x5) PE systems. (c) Schematic illustrations for the 

improper torsional mode constituted by the first CH2 unit of short branch (denoted by ‘SB1’) and CH2-

CH-CH2 (denoted by ‘1-2-3’) in SET 1 around the branch point (top panel) and for the three distinct 

backbone torsional modes (SET 1, SET 2, and SET 3) (bottom panels) for the simulated SCB PE 

systems. 
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Table 3.3.2. Population of the trans- and gauche-states for the bond-torsional mode along the chain 

backbone for the simulated ring, linear, and SCB PE systems. 

system trans (%) gauche (%) 

R_400 65.6 ± 0.2 34.4 ± 0.2 

R_565 65.8 ± 0.2 34.2 ± 0.2 

L_400 66.5 ± 0.1 33.5 ± 0.1 

L_565 66.5 ± 0.3 33.5 ± 0.3 

SCB_R_400_33x5 

(backbone) 
63.8 ± 0.2 36.2 ± 0.2 

SET 1 (CH2-CH-CH2-CH2) 41.8 ± 0.3 58.2 ± 0.3 

SET 2 (CH-CH2-CH2-CH2) 81.0 ± 0.3 19.0 ± 0.3 

SET 3 (CH2-CH2-CH2-CH2) 65.0 ± 0.1 35.0 ± 0.1 

SCB_L_400_33x5 

(backbone) 
64.5 ± 0.2 35.5 ± 0.2 

SET 1 (CH2-CH-CH2-CH2) 42.3 ± 0.1 57.7 ± 0.1 

SET 2 (CH-CH2-CH2-CH2) 81.8 ± 0.1 18.2 ± 0.1 

SET 3 (CH2-CH2-CH2-CH2) 65.8 ± 0.1 34.2 ± 0.1 
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Importantly, in comparison to their corresponding bare systems without short branches, the SCB ring 

and linear systems exhibit a noticeable quantitative discrepancy, especially with respect to the relative 

portions between the trans- and gauche-states (i.e., amounting to ~2% increase for the gauche-state and 

correspondingly ~2% decrease for the trans-state). This difference underlies the distinctive large-scale 

structural characteristics of the SCB systems, as shown in Table 3.3.1. Additionally, the difference in 

P() would become more intensified with increasing the branch density, dramatically influencing the 

overall chain structures and dynamical properties under equilibrium or nonequilibrium (flowing) 

conditions. 

To further understand the torsional differences associated with short-chain branching, we separately 

analyzed the probability distribution functions of the three distinct backbone torsional modes for the 

SCB PE melts, i.e., CH2-CH-CH2-CH2 (SET 1), CH-CH2-CH2-CH2 (SET 2), and CH2-CH2-CH2-CH2 

(SET 3). Here, SET 1 and SET 2 are directly involved with the short branches whereas SET 3 is not. As 

shown in Fig. 3.3.1(b), SET 1 displays a significantly higher extent of the gauche-conformation relative 

to the trans-conformation compared to SET 3. This structural feature can be understood by considering 

the improper torsional mode constituted by the first CH2 unit of short branch (denoted by ‘SB1’) and 

CH2-CH-CH2 (denoted by ‘1-2-3’) in SET 1, as schematically illustrated in Fig. 3.3.1(c). Due to the 

strong bending-angle (θ) constraints (i.e., θ ≈112⁰) for each of the three bending modes around the 

branch point [i.e., 1-2-3, 1-2-SB1, 3-2-SB1 in Fig. 3.3.1(c)], the ‘SB1’ and ‘1-2-3’ cannot be placed on 

the same plane. As shown in Fig. 3.3.2, the improper torsional mode exhibits a quite narrow probability 

distribution with a high peak at 48   , indicating a rather stiff local structure around the junction 

points. Therefore, SET 1 would prefer to have a torsional conformation somewhat skewed from the 

trans-conformation (thereby having a lesser degree of the trans-state) in order to avoid a relatively high 

energy state via a steric overlap between the ‘SB1’ and the last CH2 unit in SET 1 [atom ‘4’ in Fig. 

3.3.1(c)]. This results in a relative increase in the population of the gauche-state of SET 1, with which 

the torsional mode consisting of the ‘SB1’ and CH-CH2-CH2 (2-3-4) in SET 1 can be approximately 

close to the trans-state. In turn, this higher probability of the gauche-state of SET 1 is likely to suppress 

the amount of the gauche-state of SET 2, because of the pentane effect [33] [i.e., two consecutive 

torsional conformation states of gauche+-gauche- (or gauche--gauche+) being energetically unfavorable], 

leading to a relative decrease and increase in the population of the gauche- and trans-conformation 

states, respectively, for SET 2, as confirmed in Fig. 3.3.1(b) and Table 3.3.2. As SET 3 does not directly 

involve the short branches, its torsional angle distribution appears to be nearly identical to that of 

polymer chains without short branches for both ring and linear PE melts. 
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Figure 3.3.2. Probability distribution function P() of improper torsional angle ϕ around branch point 

for the SCB (SCB_R_400_33x5 and SCB_L_400_33x5) systems. The SCB ring and linear systems 

exhibit a quantitatively similar behavior of P() to each other in the whole range of the improper 

torsional angle. The positive and negative signs indicate a position of the angle above and below the 

plane, respectively. The narrow probability distribution with a high peak at  ≈ ±48° indicates a rather 

stiff local structure around the branch point. 

 

We further analyzed the dynamics of the three torsional modes involved with short branches in 

comparison to that of the regular torsional mode in the bare linear and ring polymers. In Fig. 2.3.3, we 

plot the torsional time autocorrelation function (TACF) for the simulated linear, ring, and SCB PE melt 

systems, which is defined as: 

 ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2

2

cos cos 0 cos 0
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cos 0 cos 0 cos 0

t
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Figure 3.3.3. Torsional time autocorrelation function (TACF) along the chain backbone for the 

simulated PE systems. For the SCB systems, TACFs for the three different backbone torsional modes 

[CH2-CH-CH2-CH2 (SET 1, black), CH-CH2-CH2-CH2 (SET 2, yellow), and CH2-CH2-CH2-CH2 (SET 

3, green)] are separately plotted. The bare linear and ring PE systems are represented by ‘Linear’ and 

‘Ring’, respectively. 

 

We first note that the TACFs for the bare linear and ring systems without short branches appear to be 

practically indistinguishable, indicating that the local torsional dynamics is irrelevant to the large-scale 

topological difference (i.e., linear and ring structure) as well as the chain length for sufficiently long 

polymer molecules. In contrast, the three torsional modes (SET 1, SET 2, and SET 3) for the SCB 

systems display quantitatively very different behaviors from each other. Specifically, SET 1 and SET 2 

that are explicitly involved with the branch point exhibit significantly slower relaxation behaviors 

compared to SET 3 indicating that the local torsional dynamics can be significantly affected by the short 

branches, presumably independent of the branch length. As shown in Fig. 3.3.2, these slower dynamics 

of SET 1 and SET 2 are ascribed to an extra local torsional stiffness imposed by the short branches in 

conjunction with a rather stiff improper torsional interaction around the branch point. Also noticeable 

is that SET 3 for the SCB polymers exhibits a relatively slower dynamics in comparison to the regular 

torsional mode. This is because neighboring torsional modes are not completely independent of each 

other but have a certain degree of mutual correlation between each other (this correlation is supposed 

to become stronger with increasing the branch density).  
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Let us now compare the structural and dynamical characteristics of the Rouse normal modes for the 

simulated ring, linear, and SCB melt systems. The Rouse normal coordinate is defined as [2,13,14] 

 ( )
0

1
( ) cos

N

p n

p n
t t dn

N N

 
=  

 
X R        (3.3.2) 

where Rn(t) represents the position vector of the nth atom along the chain at time t. Here, only the 

backbone atoms were included in the normal mode analysis for the SCB ring and linear polymers, since 

the branches are too short (i.e., even below the Kuhn length corresponding to about 11 carbon atoms 

for PE) to be statistically meaningful in the Rouse mode analysis. In addition, for comparison purpose, 

the two linear and the SCB linear polymers (L_400, L_565, and SCB_L_400_33x5) are replaced by 

relatively shorter polymers such as L_128, L_178, and SCB_L_128_10x5 to avoid large topological 

effects imposed by interchain entanglements. Figure 3.3.4 presents the results for the mean squared 

amplitude <Xp
2> of the pth Rouse mode as a function of N/p2 for each system. Note that only even modes 

(i.e., p = 2, 4, 6, 8, ) are allowed for ring polymers to satisfy the intrinsic closed-loop boundary 

conditions [13,14]. If a polymer behaves like an ideal Rouse chain, <Xp
2> is given by  

 

2
2

2 22
p

Nb
X

p
=         (3.3.3) 

which indicates a linear plot of <Xp
2> vs. N/p2 (as represented by a dashed line of slope 1 in Fig. 3.3.4). 

Figure 3.3.4 shows that for all the simulated ring, linear, and SCB systems, Rouse prediction is fairly 

well satisfied for low p modes (i.e., N/p2 > 4), but the deviation becomes larger for high p modes (i.e., 

N/p2 < 4) due to the non-Gaussian structural characteristics for short subchains [14,34,35]. In more 

detail, <Xp
2> at the lowest p = 2 mode for the ring systems corresponding to the overall chain dimensions 

of ring as 2 2 2 2 2

2 ring
/ 2 3 / 2d gX R R = =   appears to be slightly smaller than the Rouse 

prediction. This is attributed to the reduced overall chain dimension of rings (as being smaller than the 

Rouse prediction) via the nonconcatenation constraint [14,34] It is also important to notice that for a 

given normal mode p, <Xp
2> for the SCB ring and linear polymers is slightly smaller than that for the 

bare ring and linear polymers with the same backbone length. Again, this is attributed to the relatively 

more compact chain structures of the SCB polymers due to the short branches. 
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Figure 3.3.4. Mean squared amplitude of the Rouse normal modes <Xp
2> as a function of N/p2 (N being 

the number of backbone atoms) for (a) the bare and SCB linear PE, and (b) the bare and SCB ring PE 

melt systems. The blue dash line of slope 1 corresponds to the ideal Rouse behavior based on eqn (3.3.3). 

 

We now look into the time autocorrelation function ( ) ( ) 20p p pt XX X  which is written for the 

Rouse model as [2,13,14] 

 ( ) ( ) ( )20 exp /p p p pt X t  = −X X        (3.3.4) 

where the characteristic relaxation time τp for the pth normal mode is given by 

 
2 2

2 2

1

3
p

B

N b

k T p





=         (3.3.5) 

where  denotes the monomeric friction coefficient and kB Boltzmann’s constant. Figure 3.3.5 presents 

a semi-log plot of ( ) ( ) 20p p pt XX X  vs. p2t for the first seven normal modes for each polymer 

system. If the systems follow the Rouse scaling, the decay of the correlation functions for all normal 

modes would fall on a single straight curve. However, deviations from the ideal Rouse behavior appear 

for all the simulated ring, linear, and SCB PE systems. This is again ascribed to non-Gaussian 

characteristics via a higher degree of local structural stiffness for shorter subchains (comprising N/p 

monomers) corresponding to higher p modes [14,34,35]. Additionally, as consistent with the results for 

<Xp
2>, the decay of the correlation functions based on only the backbone atoms for the SCB ring and 

linear polymers is described quite well by the Rouse prediction compared to bare ring and linear systems. 

This feature seems to arise from the fact that the short branches, due to their very short characteristic 

time scales, relax in a time much shorter than the Rouse time scales of the backbone and play their 

dynamical role in constantly disturbing the backbone at the local branch points via their fast random 

motions, thus effectively promoting the Rouse dynamics of the backbone.  
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Figure 3.3.5. Normalized time autocorrelation functions of the first seven normal modes as a function 

of p2t: (a) p = 1, 2, 3, 4, 5, 6, and 7 for the bare and SCB linear systems, and (b) p = 2, 4, 6, 8, 10, 12, 

and 14 for the bare and SCB ring systems. The orange symbols represent the ideal Rouse behavior based 

on eqns (3.3.4) and (3.3.5). 
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3.4. Conclusion 

 

In this work, we carried out a detailed analysis on the influence of short branches on the structural 

and dynamical properties for the ring PE melts using atomistic MD simulations. To quantify the short-

branching effects in conjunction with ring topology, the results of the SCB ring polymers were directly 

compared with those of the SCB linear polymers and bare polymers at the same backbone length. Our 

results clearly show that the SCB ring and linear polymers possess the overall compact molecular 

structures in association with the intrinsically compact branched architecture and the fast random 

movements of short branches constantly disturbing the overall chain. Furthermore, ring polymers, due 

to their intrinsic closed-loop geometry together with the nonconcatenation constraint between rings, 

generally exhibit significantly compact chain structures compared to the linear polymers. Similarly, 

the compact backbone structure of SCB polymers induced by the short branches reduces the degree of 

local structural non-Gaussian character for subchains in the short length scales, thus leading to a better 

consistency with the Rouse prediction compared to the bare polymers. Furthermore, the fast random 

movement of short branches due to their very short characteristic time scales constantly disturbs the 

chain backbone at the local branch points, effectively promoting the random Brownian (Rouse) 

dynamics of the backbone. In short, the structural compactness in conjunction with the fast dynamics 

of the short branches is supposed to result in the apparently more Rouse-like dynamics of the backbone 

of the SCB polymers. We also observed that the short branches make a significant influence on the 

local torsional characteristics along the chain backbone. In particular, the torsional modes directly 

involved with the branch points in the SCB ring and linear polymers exhibit distinctive populations of 

the gauche- and trans-states compared to the regular torsional mode in the corresponding bare 

polymers. Furthermore, the dynamics of the local torsional modes around the branch points appears to 

slow down considerably via an extra torsional stiffness imposed by the short branches. 

Despite the lack of the current experimental technique to control precisely the branch distribution 

along the backbone as studied here, we expect rapid experimental advances in catalysts and chemical 

synthesis method to enable such control in the near future. It would be also interesting to examine the 

essential features found in this study in regard to the influences of short branches and ring topology 

on the structural and rheological behaviors of polymeric liquids under an external flow field. 
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Chapter 4. Nonequilibrium Monte Carlo simulations of entangled 

polymer melts under steady shear flow 

 

4.1. Introduction 

 

Due to their enormous intramolecular degree of freedom, polymers generally exhibit a variety of 

complex structural and rheological behaviors (e.g., shear thinning and thickening,[1,2] strain 

hardening,[3-5] melt fracture,[6,7] flow-induced crystallization,[8-10] and phase separation[11]) 

under external flow fields. To properly analyze the rheological properties for concentrated polymer 

solutions or melts, we need to account for the effect of spatial and dynamical intermolecular 

correlations caused by the mutual interactions between different polymer chains. Although the 

computer simulations have been proven very beneficial for understanding the complicated 

macroscopic rheological behaviors of polymer systems at fundamental molecular level [12-19], it has 

been applied to short-chain polymers rather than those employed in practical applications due to the 

time-cost problem.[20,21] To overcome this, a nonequilibrium Monte Carlo (MC) methodology was 

developed based on the GENERIC (General Equation for the NonEquilibrium Reversible-Irreversible 

Coupling) thermodynamic formalism [22,24] for simulating polymer melts undergoing external flow 

with reasonable computational costs. [25-30] The methodology incorporates an additional field energy 

term into the expanded statistical ensemble. Guided by the well-established polymer kinetic theory, 

[31] a second-rank conformation tensor based on the chain end-to-end vector was adopted as the 

nonequilibrium structural variable and the corresponding conjugate thermodynamic force variable was 

introduced to account for the flow field. The study showed that overall the GENERIC MC method 

appears capable of qualitatively (and even quantitatively up to a certain intermediate flow strength) 

reproducing the deformed structures of polymer systems under shear and elongational flows as 

obtained from NEMD simulations. [28-30] 

With such promising features of the GENERIC MC methodology, in this study we have further 

extended it to simulate entangled polymer melts under steady shear flow. To this end, similar to 

unentangled polymers, we have adopted the conformation tensor as a proper structural variable that 

represents the overall nonequilibrium structures of entangled polymeric systems. In view of a potential 

use of GENERIC MC in conjunction with NEMD for simulating long polymer systems in practical 

applications, here we have made a detailed analysis on the predictive capabilities of the GENERIC 

MC for a variety of structural and rheological properties in a wide range of flow strengths with direct 

comparison between the MC and NEMD results.  
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4.2. Simulation methods and Materials studied 

 

In this study, we carried out GENERIC MC and NEMD simulations of the C400H802  entangled linear 

polyethylene (PE) melt under shear flow at constant temperature T = 450 K and density ρ = 0.7640 

g/cm3 (corresponding to the pressure P = 1 atm).[32] The nonequilibrium states spanning from linear 

to highly nonlinear viscoelastic regimes were selected, corresponding to the Deborah numbers 

( De   ) in the interval of 0.5   De   540 based on the imposed shear rate    and the longest 

relaxation time λ = 218 ± 10 ns of the system. A sufficiently large number (i.e., 198) of molecules were 

used in the simulations with the box dimensions being set to (318.8 Å × 86.96 Å × 89.96 Å) along the 

x-, y-, and z-directions, respectively, as enlarged in the flow (x-) direction to avoid undesirable system-

size effects due to the significant chain stretch and alignment at high shear rates. The chain radius of 

gyration Rg at equilibrium was calculated as equal to 36.6 Å for the C400 PE system. Thus, the box 

dimensions in the velocity gradient (y-) and neutral (z-) directions were set to more than twice as large 

as Rg. 

Briefly describing the general features of the GENERIC MC methodology, the extended expression 

of the internal energy function U for entangled polymeric systems under external flow fields is written 

as 

 :ch seg B segU TS PV N N k T= − + + c ,        (4.2.1)  

implying that 

 ( ):ch B seg segdU TdS PdV dN k T d N= − − + c       (4.2.2) 

where Nseg denotes the total number of entanglement segments, 
23seg seg seg seg eq

R=c R R   the 

conformation tensor based on the entanglement segment vector Rseg, and the subscript eq the 

equilibrium condition, and   the conjugate thermodynamic field corresponding to 
segc  accounting 

for the flow effects, S the entropy,  the chemical potential, and kB Boltzmann’s constant. Other 

thermodynamic functions such as the generalized Helmholtz free energy A and Gibbs free energy G can 

also be derived through appropriate Legendre transforms: [28,29,33] 

 ( ) ( ), , , :ch seg seg ch B seg segdA T V N N SdT PdV dN k T d N= − − + +c c ,     (4.2.3) 

 ( ) ( ), , , :ch ch seg seg BdA T V N SdT PdV dN N d k T = − − + − c       (4.2.4) 

and 
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 ( ) ( ), , , :ch ch seg seg BdG T P N SdT VdP dN N d k T= − + + − c  .     (4.2.5) 

The GENERIC MC simulations are executed based on eqn (4.2.4) in an expanded ensemble 

(NchNVTμ*) [25-30,33] where the following variables are specified: the number of polymer chains Nch, 

the average number of atoms per chain N, the volume V, the temperature T, the spectrum of chain 

relative chemical potentials μ* controlling the distribution of chain lengths, and the thermodynamic 

field . The corresponding probability distribution function in the expanded ensemble is given as 

( ) ( )* *

1 2 1 2 ,

1 1

, , , , exp , , , , :
segch

ch

NN
N NVT

n n k k B seg i

k i

V U V N k T  
= =

   
− − −  

    
 r r r r r r c

 
     (4.2.6) 

which implies that the nonequilibrium configurational space of the system can be explored according 

to the following modified Metropolis criterion: 

 ( )
*

*

,

1 1

exp :
segch

ch

NN
N NVT

acc k k B seg i

k i

P U N k T 
= =

   
−  −  −   

    
  c

 
     (4.2.7) 

Here, 1 Bk T   , n 
1

chN

k

k

n N
=

 
= 

 
   is the total number of atoms in the system, μk

* the relative 

chemical potential of the kth chain consisting of Nk atoms, ,seg ic   the conformation tensor of the ith 

segment. Based on experimental data, [34] i.e., the entanglement molecular weight Me = 920 g/mol for 

HDPE (high density polyethylene) at T = 443 K and  = 0.768 g/cm3, the average number Ne of carbon 

atoms per entanglement segment for the C400 PE melt system in this study is estimated as Ne ≈ 68. 

Accordingly, in GENERIC MC simulations we applied the thermodynamic field  to each individual 

entanglement segment (consisting of approximately 68 carbon atoms) starting from the chain ends. We 

note that the application of the field to the entanglement segment vector for entangled PE melts 

essentially corresponds to that based on the chain end-to-end vector for unentangled PE melts. This 

feature is consistently reflected in theoretical descriptions of the structural and rheological behaviors 

with respect to the entanglement segment vector for long entangled melts and to the chain end-to-end 

vector for short unentangled melts. [10,14,17,18,31,34,36] It is thus considered the comparison for the 

 tensor between the entangled and unentangled PE systems to be meaningful from both physical and 

numerical viewpoints. We also mention that with the expression of 
( )

1

B seg seg

A

k T N


=

 c
  (where the 

linear part for the temperature effect is separated based on the classical rubber theory) from eqn (4.2.3), 

the thermodynamic force field  is dimensionless. As the field tensor plays a role of the external flow 

field driving the polymer systems to certain nonequilibrium states, it is closely related to the applied 
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shear force or shear rate, i.e., more directly to the dimensionless shear rate (i.e., De  ). With the 

chosen structure variable 
segc , the (elastic) stress tensor can be derived as: [28,29] 

 
( )

, ,

,

22 seg B
seg seg seg

seg

A k T
c N c

V c V
   




 


= =

c
      (4.2.8) 

As effectively applied to simulate unentangled polymer melts in previous studies, [28,29] the following 

simplified form of  with setting 0zz =  (based on most viscoelastic models) was adopted in the 

present GENERIC MC simulations for entangled melts: 

 

0

0

0 0 0

xx xy

xy yy

 

 

 
 

=  
 
 

 ,       (4.2.9) 

The initial values for the three nonzero components ( , , andxx xy yy   ) in GENERIC MC simulations 

were estimated based on the results of  for each De number obtained for the corresponding unentangled 

PE melts. [28,29] Although the initial values were a good starting point, they turned out to be 

insufficiently accurate for quantitative comparison. Therefore, an iteration process was carried out to 

achieve convergence between the GENERIC MC and NEMD data for 23ete ete ete ete eq
R=c R R  

based on the longest-scale chain end-to-end vector Rete, because the dynamical and rheological 

properties of polymer melt systems are mostly determined by the largest-scale chain structures. [31,36] 

For GENERIC MC simulations, a small polydispersity I ≈ 1.083 was introduced with a uniform chain 

length distribution in the range of C200H402 to C600H1202 in conjunction with an efficient chain-

connectivity altering end-bridging move. [37] In the MC simulations, the following mix of MC moves 

were used; end-bridging, 50%; concerted rotation, 32%; reptation, 10%; flip, 6%; and end-mer rotation, 

2%. [25,37,38] 

NEMD simulations were executed with the p-SLLOD algorithm, [39] implemented by a Nosé-Hoover 

thermostat [40,41] and the standard Lees−Edwards sliding brick boundary conditions. [42] The set of 

evolution equations in the NEMD method was numerically integrated using an efficient r-RESPA 

(reversible reference system propagator algorithm) [43] with two different time scales in an MD step; 

0.47 fs for the fast bonded (bond-stretching, bond-bending, and bond-torsional) interactions and 2.35 fs 

for the slow non-bonded intermolecular and intramolecular Lennard-Jones (LJ) interactions, the 

thermostat, and the flow field. The well-known Siepmann-Karaborni-Smit (SKS) united-atom potential 

model [44] was adopted for both GENERIC MC and NEMD simulations, except for that the rigid bond 

in the original model was replaced by a harmonic flexible one for the NEMD.  
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4.3. Results and Discussion 

 

 Figure 4.3.1 presents the result of thermodynamic force field field  for the simulated C400H802 

entangled PE system as a function of De number, compared to those of the unentangled systems (C50H102, 

C78H158, and C128H258) [28,29] (note that the field tensor  conjugates to etec   for unentangled PE 

systems and 
segc  for entangled PE systems). 

 

 

 

Figure 4.3.1. Comparison of the (a) xx, (b) xy, and (c) yy components of the thermodynamic force field 

 between the entangled C400H802 and unentangled (C50H102, C78H158, C128H258) [28,29] polyethylene 

melts as a function of De number. The error bars are smaller than the size of the symbols. 
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First, both the entangled and unentangled systems exhibit increases of the αxx and αxy values but a 

decrease of the αyy value, as the shear rate increases at low flow strengths. This trend reflects the fact 

that chains become more and more aligned and stretched to the flow direction with increasing the 

applied shear. Furthermore, αxy appears to be larger than αxx in magnitude in this flow regime where 

chains are likely to be oriented in the flow direction without significant structural distortions.12-14,19 In 

the intermediate flow regime, αxx is shown to increase rapidly with increasing De number for all systems, 

indicative of considerable deformation of the overall chain structure. In high flow fields, each system 

approaches a plateau value for αxx, because the average chain extension becomes saturated in 

conjunction with intensive chain rotation and tumbling behaviors under shear in the strong flow regime. 

The specific De numbers where the overall chain dimension is nearly constant generally depend on the 

chain length; e.g., further chain stretch can occur in the entangled C400 PE system beyond the range of 

De numbers depicted in Fig. 1a. [14] For αxy, while the unentangled systems exhibit a gradual increase 

with increasing De number in the intermediate flow regime and saturation at high flow strengths, the 

entangled C400 PE melt shows decreasing behavior in the intermediate flow regime. This can be 

attributed to the stronger chain alignment and xy-correlations of the long entangled polymers for a given 

flow field compared to the relatively short unentangled polymers, beyond the weak flow strengths. 

[12,14,19] In contrast to αxx and αxy, αyy decreases rather quickly with increasing De number in the 

intermediate-to-strong flow regimes for both entangled and unentangled PE systems, accounting for a 

large decrease in the overall chain dimension for the velocity gradient (y-) direction due to chain 

alignment and stretch along the flow (x-) direction. Quantitatively, the magnitude of αyy appears 

somewhat smaller for the C400 PE melt than the unentangled systems. Considering the intrinsic 

methodological feature of GENERIC MC for applying a uniform thermodynamic force field to each 

entanglement segment independently, the general characteristics of the thermodynamic field tensor 

shown by the C400 PE melt systems can be good guideline to carry out the GENERIC MC simulations 

for other entangled polymer systems. 
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Figure 4.3.2. Comparison between GENERIC MC and NEMD for the xx, xy, yy, and zz components of 

the conformation tensor etec  as a function of De number for the simulated C400H802 entangled PE melt. 

The error bars are smaller than the size of the symbols unless specified otherwise. 

 

In Fig. 4.3.2, we compare the four components of the conformation tensor etec  based on the chain end-

to-end vector between GENERIC MC and NEMD simulations for the C400 entangled PE system at 

various De numbers. Overall, the two methods show excellent agreement with each other for xx, xy, and 

yy components at all shear rates. While this result apparently indicates that the present iteration 

procedure numerically works, in view of generally very complex rheological influences by the flow 

exhibited by real polymer systems (in conjunction with an enormous number of configurational degrees 

of freedom at atomistic level), it further shows that the simple GENERIC MC approach adopted in this 

study can properly represent the large-scale nonequilibrium structures for entangled polymer systems. 

Based on these results, the information of the  tensor obtained by GENERIC MC in conjunction with 

NEMD can be used to evaluate the fundamental nonequilibrium thermodynamic functions (energy, 

entropy, and Helmholtz free energy) of flowing polymeric systems through thermodynamic integration 

[i.e., eqns (4.2.1), (4.2.2), and (4.2.4)]. Interestingly, despite our choice of αzz = 0, the result of ,ete zzc  

for GENERIC MC appears to quantitatively match that of NEMD. However, this agreement is 

considered rather fortuitous, as a large overall discrepancy of ,ete zzc  was observed between the two 

methods for unentangled melt systems in previous studies.[28,29]  
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Figure 4.3.3. (a) Comparison of the probability distribution function (PDF) of the chain end-to-end 

distance |Rete| between GENERIC MC (dashed lines) and NEMD (solid lines) for the simulated C400H802 

entangled PE melt at various De numbers. For clarity, the results at high De numbers are presented 

separately in the inset. To alleviate the influence of polydispersity for the GENERIC MC simulations, 

only chains whose length is in the range C350H702–C450H902 were included in the calculation.(b) 

Comparison between GENERIC MC (dashed lines) and NEMD (solid lines) for the probability 

distribution of the orientation angle of the chain end-to-end vector (θete) with respect to the flow 

direction as a function of De number. 
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Figure 4.3.3(a) shows a more detailed structural comparison between the GENERIC MC and NEMD 

simulations for the probability distribution of the chain end-to-end distance |Rete| at various De numbers. 

For low-to-intermediate flow strengths (up to De numbers approximately equal to 10), the GENERIC 

MC method quite successfully reproduces the overall skewed non-Gaussian distribution of the chain 

size as obtained by the NEMD. For larger flow strengths, the NEMD simulations show that the 

distribution becomes rather flattened in the intermediate regime of |Rete| with two characteristic peaks 

at small and large values of |Rete| in association with the chain rotation and stretching behaviors, 

respectively. [14,19,45] While the GENERIC MC method still provides overall consistency with 

NEMD even for rather high flow fields (De > 50), it does not correctly predict the two pronounced 

peaks and the flattened region in between; rather, it produces a smoothly declining and broadened 

distribution for larger values of |Rete|. This is attributed to the nature of the GENERIC MC 

thermodynamic force field that is applied to all entanglement segments along the chain uniformly and 

independent of each other. Such a field cannot adequately account for the complex structural and 

dynamical correlations between the segments under flow. It is further noted that the GENERIC MC 

method, by its intrinsic static nature, cannot capture the chain rotational and tumbling dynamics that 

occur in real polymeric materials undergoing shear flow as observed in NEMD simulations. Despite 

these features, the GENERIC MC method can quite faithfully describe the general trends of chain 

deformation and orientation under shear for a wide range of flow strengths. 

Figure 4.3.3(b) compares GENERIC MC and NEMD for the probability distribution of the orientation 

angle ete based on the chain end-to-end vector. As the flow strength increases, polymer chains become 

more aligned to the flow direction, resulting in the increase of the population at the angular region of 

0  ete  20. Although quantitative differences appear between the two methods for intermediate-

high flow regime, the overall distribution is quantitatively quite consistent with each other, implying 

the capabilities of the GENERIC MC for reproducing the global chain orientation with respect to the 

applied flow. 
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Further structural information can be obtained via the Brightness method that characterizes various 

atomistic chain configurations into several representative mesoscopic structures. [46,47] The mesoscale 

configuration for each chain was determined based on the bead distribution along the chain without 

regard to the actual chain size. Figure 4.3.5 compares GENERIC MC and NEMD for the probability 

distribution of the mesoscale chain configurations with respect to the applied flow strength. At very 

weak flow strengths (i.e., De   2), the PDFs are not much disturbed by the external flow. At intermediate 

flow strengths (i.e., 10   De   54), the polymer chains are significantly deformed by overall chain 

stretching and alignment in the flow direction, leading a sharp rise in the Half-dumbbell and Stretched 

configurational portions and diminish in the Kink and Coil portions. [47,48] 

 

 

Figure 4.3.5. Comparison between GENERIC MC (filled symbols) and NEMD (open symbols) for the 

distribution of the six representative mesoscale chain configurations (Fold, Half-dumbbell, Stretched, 

Kink, Dumbbell, and Coil) obtained by the Brightness method at various De numbers. A simple 

conformation sketch for the six mesoscale chain structures is presented above the plot. 
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At strong flow regime (De ≥ 108), in addition to the continuous increase in the stretched configurations 

such as Half-dumbbell and Stretched, the Fold portion gradually increases in proportion with the 

increasing shear rate via hairpin-like chain rotation and tumbling dynamics under shear. [47-49] Overall, 

the GENERIC MC method accurately predicts the NEMD results of the increasing trend of the three 

configurations (Fold, Half-dumbbell, and Stretched) and decreasing trend of the other three 

configurations (Kink, Dumbbell, and Coil). Specifically, quantitative consistencies between the two 

methods are obtained for low-to-intermediate flow strengths (up to De  10). As the flow strength 

increases further, however, significant inconsistencies appear between the two methods for each 

configuration. It is mainly attributed to the intrinsic inability of the GENERIC MC method to 

accommodate any dynamic information. In this regard, it is interesting that the GENERIC MC method 

gives rise to a dramatic increase of the Fold configuration in the intermediate flow regime. This result 

is considered due to the mean-field nature of thermodynamic force field which is uniformly and 

independently applied to individual entanglement segment in the GENERIC MC method. Increasing 

the field strength brings out the enhancement in the degree of the average segmental orientation and 

stretch without accounting for any dynamical correlations between different segments along the chain; 

e.g., chain tumbling occurs via the differences in the streaming velocity between different segments 

depending on their relative positions in the velocity gradient direction of the shear flow. [49] Therefore, 

as the flow strength increases, the GENERIC MC method tends to decrease the mesoscopic chain 

configurations (such as Dumbbell and Kink) that require locally crowded inhomogeneous bead 

distributions along the chain, and instead increase the configurations (such as Stretched and Fold) 

characterized with rather uniform bead distributions.  

We now turn our attention to the topological properties of the entangled linear C400 PE melts. The 

entanglement network of the system was attained by applying a Z1-algorithm. [50,51] 
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Figure 4.3.6 Comparison between GENERIC MC and NEMD for the representative topological 

measures obtained by the Z1-code [50,51] at various De numbers; the average primitive path (PP) 

contour length ppL , the average number of entanglement strands esZ  per chain, the average end-

to-end length esd  of an entanglement strand, and the average number of carbon atoms esN  per 

entanglement strand. The GENERIC MC results involve selective chain lengths in the range of C380H762 

to C420H842 to relieve the influence of polydispersity. 
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Figure 4.3.6 presents the results for the four representative topological measures, the average primitive 

path (PP) contour length ppL  , the average number of entanglement strands esZ   per chain, the 

average end-to-end length esd  of an entanglement strand, and the average number of carbon atoms 

esN   per entanglement strand. In weak flow fields (De   2), the topological properties appear 

practically unaffected by the flow as shown by the GENERIC MC and NEMD simulations. As the flow 

strength further increases, significant changes occur in the network properties due to the large chain 

extension and alignment. We note that chain stretch tends to increase all topological properties, whereas 

chain alignment decreases the degree of topological interactions between chains, thus reducing esZ  

and ppL  . [14] It is seen that the GENERIC MC method produces a relatively larger increase of 

ppL   while increasing flow strength in the intermediate flow regime compared to the NEMD, 

indicating a higher degree of average chain extension for a given flow field. As stated above, this is 

ascribed to the uniform force field in the entanglement level adopted in the GENERIC MC method, 

which is consistent with the results of Figure 4.3.3a. This trend of ppL  appears consistently reflected 

in the result of esZ   for which the GENERIC MC predicts a lesser degree of decrease as the De 

number increases compared to the NEMD (this is also consistent with the relatively lesser degree of 

overall chain alignment by the GENERIC MC simulations shown in Figure 4.3.3b). However, esd  

and esN  appear somewhat smaller for GENERIC MC, particularly at high De numbers. This result 

is partly correlated with that of esZ  . We note that small deviations at low De numbers between 

GENERIC MC and NEMD are ascribed to the polydispersity effect of surrounding chains that impose 

interchain entanglements on the (approximately) C400 chains. Overall, the GENERIC MC method is 

considered to reproduce the general trends of the variations in the entanglement network with respect 

to the applied shear flow fairly well. 
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Figure 4.3.7. Comparison between GENERIC MC and NEMD for (a) the average orientation angle 

based on entanglement segment vector es  and (b) the average number of entanglement (kink) points 

kinkZ  (normalized by the equilibrium value) with respect to the (normalized) PP contour segment s 

ranging from 0 to 1. For adequate comparison, only the chains whose length is in the range 

C380H762−C420H842 were involved in the GENERIC MC results. 
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Figure 4.3.7 shows a more detailed comparison of the entanglement network between GENERIC MC 

and NEMD. In Fig. 7a, we analyzed the average orientation angle of the entanglement strands with 

respect to their position along the chain, i.e., the normalized PP contour segment s ranging from 0 to 1. 

At very weak flow strength (De  1), both simulation methods show es  45 consistently along the 

whole contour PP. As the shear rate increases, the NEMD simulations exhibit an overall non-uniform 

alignment of the entanglement segments strongly dependent on their locations relative to the chain ends, 

i.e., a lesser degree of alignment to the applied flow direction as the segment becomes closer to a chain 

end (s = 0 or 1). This result is physically reasonable considering that the chain ends possess relatively 

high thermal mobility due to the large free volume around them. In comparison, GENERIC MC shows 

a nearly uniform alignment of chain segments along the whole chain except for those segments very 

close to the chain ends. As mentioned above, this is attributed to the uniformly and independently 

applied thermodynamic force field for the individual chain segments, irrespective of their location along 

the chain, in the GENERIC MC method. 

Furthermore, in Fig. 4.3.7(b), we analyze the probability distribution for the average number of 

entanglement points (kinks) per chain as a function of the segmental position along the chain. Consistent 

with the monotonic decrease of esZ  with the increasing shear rate (Fig. 6), the whole curve of kinkZ  

is seen to move downward as the De number increases for both GENERIC MC and NEMD simulations. 

However, the overall shape of the plot differs noticeably between the two methods. Similar to the result 

for es  in Fig. 4.3.7(a), the GENERIC MC gives rise to an overall uniform distribution throughout 

the chain (except for those segments very close to the chain ends), which is in sharp contrast with the 

NEMD results that show a non-uniform distribution with a strong dependence of kinkZ   on the 

segmental position. The NEMD reveals that as the De number increases, the relative value of kinkZ  

increases when the segmental position is closer to the chain end and concomitantly decreases toward 

the chain center. This result is directly associated with the increase in the degree of the overall chain 

alignment to the flow direction as the flow strength increases such that the entanglements formed 

between two neighboring chains tend to move toward the chain ends as they become more aligned to 

each other. However, such interchain correlative behaviors are mostly missing in the GENERIC MC 

method due to its intrinsic mean-field approach such that the nonequilibrium thermodynamic field is (i) 

uniformly applied to all chain segments irrespective of their positions along the chain and (ii) 

independently applied to the individual chains without regard to any spatial and dynamical correlations 

between the chains. 
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4.4. Conclusion 

 

In this study, we further extended the application of nonequilibrium GENERIC MC methodology with 

a proper choice of structural variable to simulate entangled polymeric melt systems under an external 

shear flow. In order to address the basic aspects on the performance of the GENERIC MC method, we 

directly compared the MC results with those obtained from NEMD method which has been widely 

applied to simulate realistic polymer systems under various flow conditions in favorable comparison 

with available experimental data and polymer models. Direct comparison between two methods for 

various structural, conformational and topological quantities in a wide range of shear rates exhibited 

that the GENERIC MC is capable of predicting the general trends of structural response of entangled 

polymer systems to the applied flow. On the other hand, systematic quantitative discrepancies were 

observed between GENERIC MC and NEMD in the intermediate-to-strong flow regime. This is mainly 

attributed to the inherent mean-field nature of the GENERIC MC flow field which is uniformly and 

independently applied to each entanglement segments along the chains. Therefore, the GENERIC MC 

method would not be able to correctly predict physical properties and phenomena that involve flow-

induced structural and dynamical correlations between different chain segments. Thus, the present MC 

methodology can be further improved by adequately incorporating the segmental correlations along the 

same chain and between different chains. This may be worth doing in future work. 

In turn, the thermodynamic field tensor   obtained by the GENERIC MC simulations in conjunction 

with the NEMD can be used to evaluate fundamental thermodynamic information (such as the 

nonequilibrium configurational entropy and free energy functions) of flowing polymeric systems. The 

result of the thermodynamic field tensor can also be applied to analyze the capabilities of the existing 

viscoelastic models for entangled polymers and further develop more accurate general constitutive 

models. Furthermore, considering the basically same structural characteristics (i.e., chain orientation 

and stretch) for the backbone and long branches in response to the applied flow, it would be also 

interesting to apply the GENERIC MC method to the entangled branched polymers and analyze the 

distinctive rheological properties such as a steady-state tension thickening behavior for H-shaped 

polymer melts under elongational flows which is very difficult to examine by experiment or NEMD 

method. [1,5,52] Combining the advantages of the GENERIC MC and NEMD methods may allow us 

to carry out both basic and practical studies on complex rheological behaviors of large-scale entangled 

polymeric systems under various flowing conditions.  
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